Advertisement

Pollution by endocrine disruptors in a southwest European temperate coastal lagoon (Ria de Aveiro, Portugal)

  • Maria João Rocha
  • Catarina Cruzeiro
  • Mário Reis
  • Miguel Ângelo Pardal
  • Eduardo Rocha
Article

Abstract

Ria de Aveiro is a Portuguese lagoon renowned for its ecological and economic importance. Nonetheless, in literature, few data exist about its organic pollution. Accordingly, this study chemically monitored for the first time a series of 17 endocrine disruptor compounds (EDCs). The target EDCs include natural (17β-oestradiol, oestrone) and pharmaceutical (17α-ethynylestradiol) oestrogens, industrial/household xenoestrogenic pollutants (octylphenols, nonylphenols and their mono and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein) and the phytosterol sitosterol (SITO). For the investigation of these EDCs, water samples were taken from eight sampling sites widely spread along the lagoon, at three different occasions in 2011, and analysed by gas chromatography–mass spectrometry. Results not only proved the ubiquitous distribution of all analysed EDCs but revealed that their amounts were extremely high at all sampling sites. The annual average concentrations were ≈46 ng/L for oestrogens, ≈3962 ng/L for industrial/household chemicals, ≈1740 ng/L for phytoestrogens and ≈908 ng/L for SITO. Normalising these values in ethynylestradiol equivalents (EE2eq), the oestrogenic load in this lagoon attained ≈50 ng/L EE2eq, which is a value well above that known to produce oestrogenic-induced disorders in aquatic fauna. Additionally, phosphate concentrations were also above the legal limits (>1 mg/L). Overall, data show EDCs at toxic relevant levels in the Ria de Aveiro and stress the need to enforce depollution measures in this habitat.

Keywords

Oestrogens Alkylphenols Alkylphenol ethoxylates Phytoestrogens Sitosterol 

Notes

Acknowledgements

This study was supported by the European Regional Development Fund (ERDF), through the Operational Competitiveness Program (COMPETE), and by Portuguese funds, through the Foundation for Science and Technology (FCT), via projects PTDC/MAR/70436/2006 and PEst-C/MAR/LA0015/ 2013. The research was additionally partially supported by the Strategic Funding UID/Multi/04423/2013, through national funds provided by FCT and ERDF, in the framework of the program PT2020.

Supplementary material

10661_2016_5114_MOESM1_ESM.docx (24 kb)
ESM 1 Table A – Figures referring to the SPE extraction protocol (Rocha et al. 2013a). (DOCX 23 kb)
10661_2016_5114_MOESM2_ESM.docx (18 kb)
ESM 2 Table B – Figures referring to the GC-MS quantification method (Rocha et al. 2013a). (DOCX 17 kb)
10661_2016_5114_MOESM3_ESM.xlsx (25 kb)
ESM 3 Table C – Individual concentrations of all assayed EDCs per sampling site and day of collection. (XLSX 25 kb)

References

  1. Almeida, Â., Calisto, V., Esteves, V., Schneider, R. J., Soares, A. M., Figueira, E., & Freitas, R. (2014). Presence of the pharmaceutical drug carbamazepine in coastal systems: effects on bivalves. Aquatic Toxicology, 156, 74–87. doi: 10.1016/j.aquatox.2014.08.002.CrossRefGoogle Scholar
  2. Baggett, S., Gooch, G., Hendry, S., Bielecka, M., Katerusha, O., Marin, C., & Sousa, L. Using participatory methods for coastal lagoon management and climate change In: Transboundary water management across borders and interfaces: present and future challenges (Ed.), Proceedings of the TWAM2013 International Conference & Workshops, 2013 Google Scholar
  3. Benassayag, C., Perrot-Applanat, M., & Ferre, F. (2002). Phytoestrogens as modulators of steroid action in target cells. Journal of Chromatography B, 777(1–2), 233–248. doi: 10.1016/S1570-0232(02)00340-9.CrossRefGoogle Scholar
  4. Brossa, L., Marcé, R. M., Borrull, F., & Pocurull, E. (2005). Occurrence of twenty-six endocrine-disrupting compounds in environmental water samples from Catalonia, Spain. Environmental Toxicology and Chemistry, 24(2), 261–267. doi: 10.1897/04-076r.1.CrossRefGoogle Scholar
  5. Caldwell, D. J., Mastrocco, F., Anderson, P. D., Lange, R., & Sumpter, J. P. (2012). Predicted-no-effect concentrations for the steroid estrogens estrone, 17beta-estradiol, estriol, and 17alpha-ethinylestradiol. Environmental Toxicology and Chemistry, 31(6), 1396–1406. doi: 10.1002/etc.1825.CrossRefGoogle Scholar
  6. Calisto, V., Bahlmann, A., Schneider, R. J., & Esteves, I. (2011). Application of an ELISA to the quantification of carbamazepine in ground, surface and wastewaters and validation with LC–MS/MS. Chemosphere, 84(11), 1708–1715. doi: 10.1016/j.chemosphere.2011.04.072.CrossRefGoogle Scholar
  7. Cargouet, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., & Levi, Y. (2004). Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 324(1–3), 55–66. doi: 10.1016/j.scitotenv.2003.10.035.CrossRefGoogle Scholar
  8. Chen, C.-Y., Wen, T.-Y., Wang, G.-S., Cheng, H.-W., Lin, Y.-H., & Lien, G.-W. (2007). Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. The Science of the total environment, 378(3), 352–365. doi: 10.1016/j.scitotenv.2007.02.038.CrossRefGoogle Scholar
  9. Clotfelter, E. D., & Rodriguez, A. C. (2006). Behavioral changes in fish exposed to phytoestrogens. Environmental Pollution, 144(3), 833–839. doi: 10.1016/j.envpol.2006.02.007.CrossRefGoogle Scholar
  10. Coelho, J. P., Pato, P., Henriques, B., Picado, A., Lillebø, A. I., Dias, J. M., et al. (2014). Long-term monitoring of a mercury contaminated estuary (Ria de Aveiro, Portugal): the effect of weather events and management in mercury transport. Hydrological Processes, 28(2), 352–360. doi: 10.1002/hyp.9585.CrossRefGoogle Scholar
  11. Coldham, N. G., Dave, M., Sivapathasundaram, S., McDonnell, D. P., Connor, C., & Sauer, M. J. (1997). Evaluation of a recombinant yeast cell estrogen screening assay. Environmental Health Perspectives, 105, 734–742.CrossRefGoogle Scholar
  12. Daniel, T., Sharpley, A., & Lemunyon, J. (1998). Agricultural phosphorus and eutrophication: a symposium overview. Journal of Environmental Quality, 27, 251–257.CrossRefGoogle Scholar
  13. Dias, J. M., Lopes, J. F., & Dekeyser, I. (2000). Tidal propagation in Ria de Aveiro lagoon, Portugal. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(4), 369–374. doi: 10.1016/S1464-1909(00)00028-9.CrossRefGoogle Scholar
  14. Dias, J. M., Lopes, J. F., & Dekeyser, I. (2001). Lagrangian transport of particles in Ria de Aveiro lagoon, Portugal. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(9), 721–727. doi: 10.1016/S1464-1909(01)00076-4.CrossRefGoogle Scholar
  15. Directive (2000). Directive 2000/60/EC of the European Parliament and of the council. Official Journal of the European Communities.Google Scholar
  16. Directive. (2003). Directive 2003/53/EC. Book of the amending for the 26th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (nonylphenol, nonylphenol ethoxylate and cement). Official Journal of the European Union, L178, 24–27.Google Scholar
  17. Ferreira, J. G., Simas, T., Nobre, A., Silva, M. C., Shifferegger, K., & Lencart-Silva, J. (2003). Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems. Application of the United States National estuarine eutrophication assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana systems. Google Scholar
  18. Figueiredo Da Silva, J., Duck, R. W., Hopkins, T. S., & Anderson, J. M. (2002). Nearshore circulation revealed by wastewater discharge from a submarine outfall, Aveiro Coast, Portugal. Hydrology and Earth System Sciences Discussions, 6(6), 983–988.CrossRefGoogle Scholar
  19. Galante-Oliveira, S., Oliveira, I., Pacheco, M., & Barroso, C. M. (2010). Hydrobia ulvae imposex levels at Ria de Aveiro (NW Portugal) between 1998 and 2007: a counter-current bioindicator? Journal of Environmental Monitoring, 12(2), 500–507. doi: 10.1039/b908597a.CrossRefGoogle Scholar
  20. Grilo, T. F., Cardoso, P. G., Pato, P., Duarte, A. C., & Pardal, M. A. (2013). Organochlorine accumulation on a highly consumed bivalve (Scrobicularia plana) and its main implications for human health. Science of The Total Environment, 461–462, 188–197. doi: 10.1016/j.scitotenv.2013.04.096.CrossRefGoogle Scholar
  21. Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics software for education and data analysis. Palaentologia Electronica, 4, 9.Google Scholar
  22. Hoerger, C. C., Wettstein, F. E., Hungerbuehler, K., & Bucheli, T. D. (2009). Occurrence and origin of estrogenic isoflavones in Swiss river waters. Environmental Science & Technology, 43(16), 6151–6157. doi: 10.1021/es901034u.CrossRefGoogle Scholar
  23. ICH (2005). Validation of analytical procedures: Methodology, Q2(R1). International Conference on Harmonisation Google Scholar
  24. Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C., Kohler, H.-P., & Giger, W. (2010). Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environmental Science and Pollution Research, 17(4), 834–843. doi: 10.1007/s11356-009-0275-5.CrossRefGoogle Scholar
  25. Lagana, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2004). Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501(1), 79–88. doi: 10.1016/j.aca.2003.09.020.CrossRefGoogle Scholar
  26. Leusch, F. D. L., & MacLatchy, D. L. (2003). In vivo implants of β-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus). General and Comparative Endocrinology, 134(3), 255–263. doi: 10.1016/S0016-6480(03)00265-X.CrossRefGoogle Scholar
  27. Lillebø, A. I., Válega, M., Otero, M., Pardal, M. A., Pereira, E., & Duarte, A. C. (2010). Daily and inter-tidal variations of Fe, Mn and Hg in the water column of a contaminated salt marsh: halophytes effect. Estuarine, Coastal and Shelf Science, 88(1), 91–98. doi: 10.1016/j.ecss.2010.03.014.CrossRefGoogle Scholar
  28. Lundgren, M. S., & Novak, P. J. (2009). Quantification of phytoestrogens in industrial waste streams. Environmental Toxicology and Chemistry, 28(11), 2318–2323. doi: 10.1897/09-029.1.CrossRefGoogle Scholar
  29. Martins, V. A., Frontalini, F., Tramonte, K. M., Figueira, R. C. L., Miranda, P., Sequeira, C., et al. (2013). Assessment of the health quality of Ria de Aveiro (Portugal): heavy metals and benthic foraminifera. Marine Pollution Bulletin, 70(1–2), 18–33. doi: 10.1016/j.marpolbul.2013.02.003.CrossRefGoogle Scholar
  30. Micić, V., & Hofmann, T. (2009). Occurrence and behaviour of selected hydrophobic alkylphenolic compounds in the Danube River. Environmental Pollution, 157(10), 2759–2768. doi: 10.1016/j.envpol.2009.04.028.CrossRefGoogle Scholar
  31. Mills, L. J., & Chichester, C. (2005). Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Science of The Total Environment, 343(1–3), 1–34. doi: 10.1016/j.scitotenv.2004.12.070.CrossRefGoogle Scholar
  32. Pereira, M. E., Lillebø, A. I., Pato, P., Válega, M., Coelho, J. P., Lopes, C. B., et al. (2009). Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environmental Monitoring and Assessment, 155(1–4), 39–49. doi: 10.1007/s10661-008-0416-1.CrossRefGoogle Scholar
  33. Pojana, G., Gomiero, A., Jonkers, N., & Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 33(7), 929–936. doi: 10.1016/j.envint.2007.05.003.
  34. Rearick, D. C., Fleischhacker, N. T., Kelly, M. M., Arnold, W. A., Novak, P. J., & Schoenfuss, H. L. (2014). Phytoestrogens in the environment, I: occurrence and exposure effects on fathead minnows. Environmental Toxicology and Chemistry, 33(3), 553–559. doi: 10.1002/etc.2461.CrossRefGoogle Scholar
  35. Ribeiro, C., Pardal, M., Tiritan, M. E., Rocha, E., Margalho, R., & Rocha, M. J. (2009). Spatial distribution and quantification of endocrine-disrupting chemicals in Sado River estuary, Portugal. Environmental Monitoring and Assessment, 159(1–4), 415–427. doi: 10.1007/s10661-008-0639-1.CrossRefGoogle Scholar
  36. Rocha, M. J., Cruzeiro, C., Peixoto, C., & Rocha, E. (2014a). Annual fluctuations of endocrine-disrupting compounds at the lower end of the Lima River, Portugal, and in adjacent coastal waters. Archives of Environmental Contamination and Toxicology, 67(3), 389–401. doi: 10.1007/s00244-014-0063-1.CrossRefGoogle Scholar
  37. Rocha, M. J., Cruzeiro, C., Reis, M., Pardal, M., & Rocha, E. (2014b). Spatial and seasonal distribution of 17 endocrine disruptor compounds in an urban estuary (Mondego River, Portugal): evaluation of the estrogenic load of the area. Environmental Monitoring and Assessment, 186(6), 3337–3350. doi: 10.1007/s10661-014-3621-0.CrossRefGoogle Scholar
  38. Rocha, M. J., Cruzeiro, C., Reis, M., Rocha, E., & Pardal, M. (2013a). Determination of seventeen endocrine disruptor compounds and their spatial and seasonal distribution in Ria Formosa Lagoon (Portugal). Environmental Monitoring and Assessment, 185(10), 8215–8226. doi: 10.1007/s10661-013-3168-5.CrossRefGoogle Scholar
  39. Rocha, M. J., Cruzeiro, C., Reis, M., Rocha, E., & Pardal, M. A. (2013b). Determination of 17 endocrine disruptor compounds and their spatial and seasonal distribution in the Sado River Estuary (Portugal). Toxicological & Environmental Chemistry, 95(2), 237–253. doi: 10.1080/02772248.2012.758730.CrossRefGoogle Scholar
  40. Rocha, M. J., Cruzeiro, C., & Rocha, E. (2013c). Development and validation of a GC-MS method for the evaluation of 17 endocrine disruptor compounds, including phytoestrogens and sitosterol, in coastal waters—their spatial and seasonal levels in Porto costal region (Portugal). Journal of Water and Health, 11(2), 281–296. doi: 10.2166/wh.2013.021.CrossRefGoogle Scholar
  41. Rocha, M. J., & Rocha, E. (2015). Estrogenic compounds in estuarine and coastal water environments of the Iberian western atlantic coast and selected locations worldwide — relevancy, trends and challenges in view of the EU water framework directive (Toxicology Studies - Cells, Drugs and Environment).Google Scholar
  42. Safe, S. H. (2000). Endocrine disruptors and human health—is there a problem? An update. Environmental Health Perspectives, 108(6), 487–493.Google Scholar
  43. Sharpe, R. L., Woodhouse, A., Moon, T. W., Trudeau, V. L., & MacLatchy, D. L. (2007). β-Sitosterol and 17β-estradiol alter gonadal steroidogenic acute regulatory protein (StAR) expression in goldfish, Carassius auratus. General and Comparative Endocrinology, 151(1), 34–41. doi: 10.1016/j.ygcen.2006.11.005.CrossRefGoogle Scholar
  44. Stevenson, L., Brown, A., Montgomery, T., & Clotfelter, E. (2011). Reproductive consequences of exposure to waterborne phytoestrogens in male fighting fish Betta splendens. Archives of Environmental Contamination and Toxicology, 60(3), 501–510. doi: 10.1007/s00244-010-9561-y.CrossRefGoogle Scholar
  45. Urbatzka, R., Rocha, E., Reis, B., Cruzeiro, C., Monteiro, R. A. F., & Rocha, M. J. (2012). Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish. Environmental Pollution, 164, 28–35. doi: 10.1016/j.envpol.2012.01.018.CrossRefGoogle Scholar
  46. USEPA. (1996). Environmental indicators of water quality in the United States (US EPA 841-R-96-02). In O. o. w. (4503F). Washington, D.C: US Government Printing Office.Google Scholar
  47. WFD (2000). Directive 2000/60/Ec of the European Parliament and of the Council. Official Journal of the European Communities.Google Scholar
  48. WFD (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union.Google Scholar
  49. WHO (2011). Guidelines for drinking-water quality - Nitrate and nitrite in drinking-water. In Background document for development of WHO. (Ed.): Word Health Organization.Google Scholar
  50. Ying, G.-G., Kookana, R. S., & Ru, Y.-J. (2002a). Occurrence and fate of hormone steroids in the environment. Environment International, 28(6), 545–551. doi: 10.1016/S0160-4120(02)00075-2.CrossRefGoogle Scholar
  51. Ying, G.-G., Williams, B., & Kookana, R. (2002b). Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment International, 28(3), 215–226. doi: 10.1016/S0160-4120(02)00017-X.CrossRefGoogle Scholar
  52. Zoller, U. (2006). Estuarine and coastal zone marine pollution by the nonionic alkylphenol ethoxylates endocrine disrupters: Iis there a potential ecotoxicological problem? Environment International, 32(2), 269–272. doi: 10.1016/j.envint.2005.08.023.CrossRefGoogle Scholar
  53. Zoller, U., Plaut, I., & Hushan, M. (2004). The case of the nonionic alkylphenol ethoxylates in the Mediterranean Sea region: is there a problem? Water science and technology : a journal of the International Association on Water Pollution Research, 50(5), 79–84.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria João Rocha
    • 1
    • 2
  • Catarina Cruzeiro
    • 1
    • 2
  • Mário Reis
    • 3
  • Miguel Ângelo Pardal
    • 3
  • Eduardo Rocha
    • 1
    • 2
  1. 1.Histomorphology, Physiopathology and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR)University of Porto (UPorto)PortoPortugal
  2. 2.Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS)UPortoPortoPortugal
  3. 3.CFE—Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations