Intertidal nematode communities in the Mekong estuaries of Vietnam and their potential for biomonitoring

  • Ngo Xuan Quang
  • Nguyen Ngoc Chau
  • Nic Smol
  • Larisa Prozorova
  • Ann Vanreusel
Article

Abstract

Nematode communities in eight Mekong estuaries were investigated during the dry season. The aim of the study was to identify the structure and the diversity of the communities in relation to the main environmental characteristics. In each estuary, three to four intertidal sampling stations were identified at regular distances from the mouth to up to 45 km land inward. The nematode communities showed a strong correlation with sediment composition and to a lesser degree with chlorophyll a concentrations. Multivariate analysis resulted in the identification of four types of communities. We identified two types of Desmodora communities in the sandy mouth stations and two types of Parodontophora communities in the silty sand stations. One of the silt associated communities showed a preference for higher chlorophyll a concentrations, resulting in higher densities and higher diversity, mainly of monhysterid species. Because of the strong association between community structure and sediment composition, nematodes are a meaningful tool for monitoring changes in their environment. In case their community deviates from what is expected based on sediment, it may serve as an early warning for disturbance.

Keywords

Nematode communities Desmodora Paradontophora Environment Mekong estuary Biomonitoring 

References

  1. Abebe, E., Andrássy, I., Traunspurger, W. (2006) The handbook on Freshwater nematodes: ecology and taxonomy. The CABI Publisher, 752 pp.Google Scholar
  2. Adão, H., Alves, A. S., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. (2009). Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European Estuaries. Acta Oecologica, 35, 287–300.CrossRefGoogle Scholar
  3. Alongi, D. M. (1987). Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Marine Biology, 95, 447–458.CrossRefGoogle Scholar
  4. Alves, A. S., Adão, H., Ferrero, T. J., Marques, J. C., Costa, M. J., & Patrício, J. (2013). Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecological Indicators, 24, 462–475.CrossRefGoogle Scholar
  5. Balsamo, M., Semprucci, F., Frontalini, F., & Coccioni, R. (2012). Meiofauna as a tool for marine ecosystem biomonitoring. In A. Cruzado (Ed.), Marine Ecosystems. Rijeka, Croatia: Publisher InTech. 210 pp.Google Scholar
  6. Bongers, T. (1988) De Nematoden van Nederland. Natuurhistorische Bibliotheek van de KNNV, Nr. 46. Stichting Uitgeverij van de Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht, 408pp.Google Scholar
  7. Bongers, T. (1990). The maturity index: sn ecological measure of an environmental disturbance based on nematode species composition. Oecologia, 83, 14–19.CrossRefGoogle Scholar
  8. Bongers, T., Alkemade, R., & Yeates, G. W. (1991). Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Marine Ecology Progress Series, 76, 135–142.CrossRefGoogle Scholar
  9. Bongers, T., & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224–228.CrossRefGoogle Scholar
  10. Chen, C. A., Mohd-Long, S., & Mohd-Rosli, N. (2012). Spatial distribution of tropical estuarine nematode communities in Sarawak, Malaysia (Borneo). The Raffles Bulletin of Zoology, 60(1), 173–181.Google Scholar
  11. Clarke, K.R., Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRlMER-E, 2nd edition. Plymouth.Google Scholar
  12. Cortelezzi, A., Rodrigues, C. A., Boccardi, L., & Arocena, R. (2007). Benthic assemblages of a temperate estuarine system in South America: transition from a freshwater to an estuarine zone. Journal of Marine Systems, 68, 569–580.CrossRefGoogle Scholar
  13. Coull, B. C. (1999). Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology, 24, 327–343.CrossRefGoogle Scholar
  14. De Grisse, A. T. (1969). Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Meded. Rijksfakulteit Landbouwwetenschappen. Gent, 34, 351–369.Google Scholar
  15. Essink, K., & Keidel, H. (1998). Change in estuarine nematode communities following a decrease of organic pollution. Aquatic Ecology, 32, 195–202.CrossRefGoogle Scholar
  16. Ferrero, T. J., Debenham, N. J., & Lambshead, P. J. D. (2008). The nematodes of the Thames estuary: assemblage structure and biodiversity, with a test of Attrill’s linear model. Estuarine, Coastal and Shelf Science, 793, 409–418.CrossRefGoogle Scholar
  17. Fiscus, D. A., & Neher, D. A. (2002). Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications, 12, 565–575.CrossRefGoogle Scholar
  18. Forster, S. J. (1998). Osmotic stress tolerance and osmoregulation of intertidal and subtidal nematodes. Journal of Experimental Marine Biology and Ecology, 224, 109–125.CrossRefGoogle Scholar
  19. Furstenberg, J. P., Baird, D., Vanreusel, A., & Port, E. (1999). Nematodes as indicators of pollution: a case study from the Swartkops River system, South Africa. Zoology and Animal Science Papers, 397, 155–169.Google Scholar
  20. Gyedu-Ababio, T. K., Furstenberg, J. P., Baird, D., & Vanreusel, A. (1999). Nematodes as indicators of pollution: a case study from the Swartkops River system, South Africa. Hydrobiologia, 397, 155–169.CrossRefGoogle Scholar
  21. Heip, C. (1980). Meiobenthos as a tool in the assessment of marine environmental quality. Rapports et Procès-Verbaux des Réunions Monaco, 179, 182–187.Google Scholar
  22. Heip, C., Herman, P. M. J., & Soetaert, K. (1988). Data processing, evaluation, and analysis. In R. P. Higgins & H. Thiel (Eds.), Introduction to the Study of meiofauna (pp. 197–231). Washington, DC: Smithsonian Institution Press.Google Scholar
  23. Heip, C., Vincx, M., & Vranken, G. (1985). The ecology of marine nematodes. Oceanography and Marine Biology - An Annual Review, 23, 399–489.Google Scholar
  24. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 1–31.CrossRefGoogle Scholar
  25. Hourston, M., Potter, I. C., Warwick, R. M., & Valesini, F. J. (2011). The characteristics of the nematode faunas in subtidal sediments of a large microtidal estuary and nearshore coastal waters differ markedly. Estuarine, Coastal and Shelf Science, 94, 68–76.CrossRefGoogle Scholar
  26. Hourston, M., Potter, I. C., Warwick, R. M., Valesini, F. J., & Clark, K. R. (2009). Spatial and seasonal variations in the ecological characteristics of the free-living nematode assemblages in a large microtidal estuary. Estuarine Coastal and Shelf Science, 822, 309–322.CrossRefGoogle Scholar
  27. Hua, E., Zhang, Z. N., & Zhang, Y. (2009). Environmental factors affecting nematode community structure in the Changjiang Estuary and its adjacent waters. Journal of the Marine Biological Association of the United Kingdom, 89(1), 109–117.CrossRefGoogle Scholar
  28. Hua, E., Zhang, Z., & Zhang, Y. (2006). Meiofauna distribution at the oxygen minimum zone in Changjiang Yangtze estuary river. Acta Oceanologica Sinica, 255, 1–15.Google Scholar
  29. Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52, 577–586.CrossRefGoogle Scholar
  30. Kapusta, S.C, Bemvenuti, C.E., Würdig, N.L. (2006a) Meiofauna spatial-temporal distribution in a subtropical estuary of southern coast Brazil. Journal of Coastal Research, SI 39 Proceedings of the 8th International Coastal Symposium, Itajaí, SC, Brazil, 1238–1242.Google Scholar
  31. Kapusta, S. C., Wurdig, N. L., Bemvenuti, C. E., & Pinto, T. K. (2006b). Spatial and temporal distribution of nematoda in a subtropical estuary. Acta Limnologica Brasiliensia, 182, 133–144.Google Scholar
  32. McLusky, D. S. (1971). Ecology of estuaries. London: Heinmann Educational Books. 133pp.Google Scholar
  33. Montagna, P. A., Kalke, R. D., & Ritter, C. (2002). Effect of restored freshwater inflow on macrofauna and meiofauna in upper Rincon Bayou, Texas. Estuaries, 256B, 1436–1447.CrossRefGoogle Scholar
  34. Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11, 328–336.CrossRefGoogle Scholar
  35. Ngo, X. Q., Smol, N., & Vanreusel, A. (2013). The meiofauna distribution in correlation with environmental characteristics in 5 Mekong estuaries, Vietnam. Cahiers de Biologie Marine, 54, 71–83.Google Scholar
  36. Nguyen, A. D., & Savenije, H. H. G. (2006). Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences, 10, 743–754.CrossRefGoogle Scholar
  37. Nguyen, V. T. (2007). Fauna of Vietnam. Free-living nematodes orders Monhysterida, Araeolaimida, Chromadorida, Rhabditida, Enoplida, Mononchida and Dorylaimida. Hanoi: Science Technology Publication. 455 pp. (in Vietnamese).Google Scholar
  38. Nicholas, W.L. and Stewart, A.C. (1993) The nematode fauna of two estuarine mangrove mud-flat on the South Coast of New South Wales. The nematode fauna of NSW South Coast, 28pp.Google Scholar
  39. Niels, S.L., Banta, G.T., Pedersen, M.F. (2004) The influence of Primary Producers on estuarine nutrient cycling. Aquatic ecology book series, Volume 2. Kluwer Academic Publishers, 303pp.Google Scholar
  40. Olson, B. H. (1978). Enhanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Journal of Applied Microbiology, 36, 438.Google Scholar
  41. Pastor de Ward, C. T., & Russo, V. (2009). Distribution of Diplolaimella and Diplolaimelloides species from Patagonian lagoons and coastal waters (Nematoda: Monhysteridae), Chubut and Santa Cruz provinces (Argentina). Journal of the Marine Biological Association of the United Kingdom, 89, 711–718.CrossRefGoogle Scholar
  42. Patrício, J., Adão, H., João, M. N., Alves, A. S., Traunspurger, W., & Marques, J. C. (2012). Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecological Indicators, 14, 124–137.CrossRefGoogle Scholar
  43. Pavlyuk, O., Yulia, T., Nguyen, V. T., & Nguyen, D. T. (2008). Meiobenthos in estuary part of Ha Long Bay Gulf of Tonkin, South China Sea, Vietnam. Ocean Science Journal, 43(3), 153–160.CrossRefGoogle Scholar
  44. Platt, H.M. & Warwick, R.M. (1988) Free-living Marine Nematodes. Part II. British Chromadorids. Kermack, D.M. & Barnes, R.S.K., eds. Brill, E.J, Dr Backhuys, W. Leiden, 502 pp.Google Scholar
  45. Platt, H.M., Warwick, R.M. (1983) Free-living Marine Nematodes. Part I. British Enoplids. Synopses of the British Fauna. No. 28. Linnean Society of London/Estuarine & Brackish Water Society, 307 pp.Google Scholar
  46. Riemann, E. (1966) Die interstitielle Fauna im Elbe-Aestuar Verbreitung und Systematik. Archiv für Hydrobiologie, Suppl. 31,1-279.Google Scholar
  47. Semprucci, F., & Balsamo, M. (2011). Free-living marine nematodes as bioindicators: past, present and future perspectives. Environmental Research Journal, 6, 1–19.Google Scholar
  48. Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 and 623–656.Google Scholar
  49. Smol, N., Willems, K. A., Govaere, J. C., & Sandee, A. J. J. (1994). Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary SW Netherlands. Hydrobiologia, 282(283), 197–217.CrossRefGoogle Scholar
  50. Soetaert, K., Vincx, M., Wittoeck, J., & Tulkens, M. (1995). Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia, 311, 185–206.CrossRefGoogle Scholar
  51. Steyaert, M., Vanaverbeke, J., Vanreusel, A., Barranguet, C., Lucas, C., & Vincx, M. (2003). The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science, 58, 353–366.CrossRefGoogle Scholar
  52. Van Hoey, G., Degraer, S., & Vincx, M. (2004). Macrobenthic community of soft-bottom sediments at the Belgian Continental. Estuarine, Coastal and Shelf Science, 59, 599–613.CrossRefGoogle Scholar
  53. Vanaverbeke, J, Bezerra, TN, Braeckman, U, De Groote, A, De Meester, N, Deprez, T, Derycke, S, Guilini, K, Hauquier, F, Lins, L, Maria, T, Moens, T, Pape, E, Smol, N, Taheri, M, Van Campenhout, J., Vanreusel, A, Wu, X, Vincx, M. (2015) NeMys: World Database of Free-Living Marine Nematodes. Accessed at http://nemys.ugent.be on 2015-10-08.
  54. Vanaverbeke, J., Steyaert, M., Vanreusel, A., & Vincx, M. (2003). Nematode biomass spectra as descriptors of functional changes due to human and natural impact. Marine Ecology Progress Series, 249, 157–170.CrossRefGoogle Scholar
  55. Vincx, M. (1990). Diversity of the nematode communities in the Southern Bight of the North Sea. Netherlands Journal of Sea Research, 251(21), 181–188.CrossRefGoogle Scholar
  56. Vincx, M. (1996). Meiofauna in marine and freshwater sediments. In G. S. Hall (Ed.), Methods for the examination of organismal diversity in soils and sediments (pp. 187–195). Wallinfort, UK: CAB International.Google Scholar
  57. Vincx, M., Meire, P., & Heip, C. (1990). The distribution of nematodes communities in the Southern Bight of the North Sea. Cahiers de Biologie Marine, 31, 107–129.Google Scholar
  58. Ward, A. R. (1973). Studies on the sublittoral free-living nematodes of Liverpool Bay. I. The structure and distribution of the nematode populations. Marine Biology, 22, 53–66.CrossRefGoogle Scholar
  59. Warwick, R. M., & Gee, J. M. (1984). Community structure of estuarine meiobenthos. Marine Ecology Progress Series, 43, 213–219.Google Scholar
  60. Warwick, R.M., Platt, H.M., Somerfield, P.J. (1988) Free living marine nematodes. Part III. Monhysterids. The Linnean Society of London and the Estuarine and Coastal Sciences Association, London, 296 pp.Google Scholar
  61. Wieser, W. (1953). Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv för Zoologi, 2, 439–484.Google Scholar
  62. Yeates, G. W. (2004). Ecological and behavioural adaptations. In R. Gaugler & A. L. Bilgrami (Eds.), Nematode behaviour (CABI Publishing, pp. 1–24). UK: Wallingford.CrossRefGoogle Scholar
  63. Yodnarasri, S., Tada, K., & Montani, S. (2006). Temporal changes of the environment conditions of the sediment and abundance of the nematode community in the subtidal sediment near the river mouth with tidal mudflats. Plankton Benthos Research, 12, 109–116.CrossRefGoogle Scholar
  64. Zullini, A. (2005) The Identification manual for freshwater nematode genera, Lecture book, MSc Nematology Ghent University.Google Scholar
  65. Zullini, A. (2006) Order Triplonchida. In Abebe, E., Andrássy, I., Traunspurger, W. (eds) The handbook on Freshwater nematode: Ecology and Taxonomy. CABI International Publisher, pp. 293–325.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ngo Xuan Quang
    • 1
    • 2
  • Nguyen Ngoc Chau
    • 3
  • Nic Smol
    • 4
  • Larisa Prozorova
    • 5
  • Ann Vanreusel
    • 6
  1. 1.Division of Environmental Quality, Atmospheric Science and Climate Change & Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of Environmental Management and Technology, Institute of Tropical BiologyVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
  3. 3.Department of Nematology, Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyCau GiayVietnam
  4. 4.Postgraduate International Nematology Course, Biology DepartmentGhent UniversityGhentBelgium
  5. 5.Institute of Biology and Soil Science (IBSS) FEB RASVladivostokRussia
  6. 6.Marine Biology Research Group, Biology DepartmentGhent UniversityGhentBelgium

Personalised recommendations