Advertisement

Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum

  • Lijin Lin
  • Daiyu Yang
  • Xun Wang
  • Ming’an LiaoEmail author
  • Zhihui Wang
  • Xiulan Lv
  • Fuyi Tang
  • Dong Liang
  • Hui Xia
  • Yunsong Lai
  • Yi Tang
Article

Abstract

The effects of grafting on the cadmium (Cd) accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied under Cd stress in our experiment. Four treatments were used in the experiment: ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). SG and DG decreased the root, scion stem, leaf, whole shoot, and whole plant biomasses compared with UG, but increased the rootstock stem biomass, while only PG increased the root and whole plant biomasses. SG and DG increased the Cd contents in the different organs of S. photeinocarpum compared with UG, while PG decreased the Cd content compared with UG. The Cd extraction by the whole plant of S. photeinocarpum was ranked as DG > SG > UG > PG. Additionally, the antioxidant enzyme activities in SG and DG were enhanced compared with UG, while that of PG was reduced compared with UG. The grafting increased the DNA methylation levels and changed the methylation patterns of S. photeinocarpum compared with UG. Therefore, SG and DG can increase the Cd accumulation in S. photeinocarpum, which can be used for the phytoremediation of Cd-contaminated soil.

Keywords

Solanum photeinocarpum Grafting Cadmium DNA methylation Phytoremediation 

References

  1. Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition, 54, 555–559.CrossRefGoogle Scholar
  2. Bao, S. D. (2000). Soil agrochemical analysis. Beijing: China Agriculture Press (in Chinese).Google Scholar
  3. Bautista, A. S., Calatayud, A., Nebauer, S. G., Pascual, B., Maroto, J. V., & López-Galarz, S. (2011). Effects of simple and double grafting melon plants on mineral absorption, photosynthesis, biomass and yield. Scientia Horticulturae, 130, 575–580.CrossRefGoogle Scholar
  4. Chandler, V. L., Rivin, C., & Walbot, V. (1986). Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics, 114, 1007–1021.Google Scholar
  5. Chen, H. (2006). Studies on grafting and variation in the graft union. (Doctor Thesis) Sichuan Agricultural University, Chengdu, Sichuan, China (in Chinese).Google Scholar
  6. Datta, R., & Sarkar, D. (2004). Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals. Environmental Geosciences, 11, 53–63.CrossRefGoogle Scholar
  7. Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., & Zhang, X. (2008). Grafting effects on vegetable quality. Hortscience, 43, 1670–1672.Google Scholar
  8. Edelstein, M., and Ben-Hur, M. (2007). Preventing contamination of supply chains by using grafted plants under irrigation with marginal water. In Wilson, J (Ed.), Proceedings of the International Symposium on Water Resources Management. Honolulu, Hawaii, USA, 150–154.Google Scholar
  9. Estañ, M. T., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Flowers, T. J., & Bolarin, M. C. (2004). Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56, 703–712.CrossRefGoogle Scholar
  10. Fedoroff, N., Schlappi, M., & Raina, R. (1995). Epigenetic regulation of the maize Spm transposon. Bioessays, 17, 291–297.CrossRefGoogle Scholar
  11. Hao, Z. B., Cang, J., & Xu, Z. (2004). Plant physiology experiment. Harbin: Harbin Institute of Technology Press (in Chinese).Google Scholar
  12. Hu, Y. Q., Su, Y., Han, F. Y., Shu, M. L., & Cui, S. M. (2007). The research of anatomical structures and three activity of antioxidases change of grafted cucumber seedling. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 28, 224–230 (in Chinese).Google Scholar
  13. Ikeda, Y., & Kinoshita, T. (2009). DNA demethylation: a lesson from the garden. Chromosoma, 118, 37–41.CrossRefGoogle Scholar
  14. King, S. R., Davis, A. R., Liu, W., & Levi, A. (2008). Grafting for disease resistance. Hortscience, 43, 1673–1676.Google Scholar
  15. Li, J. Y., Tian, H. X., Li, X. G., Meng, J. J., & He, Q. W. (2008). Higher chilling-tolerance of grafted-cucumber seedling leaves upon exposure to chilling stress. Agricultural Sciences in China, 7, 570–576.CrossRefGoogle Scholar
  16. Lin, L., Jin, Q., Liu, Y., Ning, B., Liao, M., & Luo, L. (2014). Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method. Environmental Toxicology and Chemistry, 33, 2422–2428.CrossRefGoogle Scholar
  17. Lu, S. F. (2000). Peroxidase isoenzymes in tomato/tomato graft union. Acta Horticulturae Sinica, 27, 340–344 (in Chinese).Google Scholar
  18. Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.CrossRefGoogle Scholar
  19. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, l-56.Google Scholar
  20. Meng, H. B., Du, X., Jiang, Y. X., Pak, H., Guo, W. L., & Jiang, L. X. (2010). Comparison between tetraploid turnip (Brassica rapa) and its diploid progenitor of DNA methylation under cadmium stress. Journal of Nuclear Agricultural Sciences, 24, 1297–1304 (in Chinese).Google Scholar
  21. Mori, S., Uraguchi, S., Ishikawaa, S., & Arao, T. (2009). Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environmental and Experimental Botany, 67, 127–132.CrossRefGoogle Scholar
  22. Qin, Q., Li, X. M., Tai, P. D., Liu, W., Feng, Q., Deng, X., et al. (2013). Cadmium accumulation in different eggplant cultivars and the effects of grafting on the cadmium accumulation characteristics. Chinese Journal of Ecology, 32, 2043–2048 (in Chinese).Google Scholar
  23. Rastmanesh, F., Moore, F., & Keshavarzi, B. (2010). Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bulletin of Environmental Contamination and Toxicology, 85, 515–519.CrossRefGoogle Scholar
  24. Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127, 172–179.CrossRefGoogle Scholar
  25. Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50, 180–188.CrossRefGoogle Scholar
  26. Rout, G. R., Samantaray, S., & Das, P. (1999). Differential cadmium tolerance of mung bean and rice genotypes in hydroponic culture. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 49, 234–241.CrossRefGoogle Scholar
  27. Steimer, A., Amedeo, P., Afsar, K., Fransz, P., Scheid, O. M., & Paszkowski, J. (2000). Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell, 12, 1165–1178.CrossRefGoogle Scholar
  28. Su, Y., Guo, J. M., Hu, Y. Q., Huo, X. W., Chen, Y. M., & Cui, S. M. (2006). Effects of cicatrization on the anatomical structures and analysis of the activities of isozymes peroxidase (POD) in grafted cucumber seedlings. Journal of Shenyang Agricultural University, 37, 343–347 (in Chinese).Google Scholar
  29. Sugiyama, M., Ae, N., & Arao, T. (2007). Role of roots in differences in seed cadmium concentration among soybean cultivars: proof by grafting experiment. Plant and Soil, 295, 1–11.CrossRefGoogle Scholar
  30. Wu, H. Y., Tai, P. D., Li, P. J., Fang, Y., Qin, Q., Yang, H., et al. (2011). Cadmium tolerance of and cadmium transportation and accumulation in Salix matsudana. Chinese Journal of Ecology, 30, 1222–1228 (in Chinese).Google Scholar
  31. Wu, R., Wang, X., Lin, Y., Ma, Y., Liu, G., Yu, X., et al. (2013). Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE, 8, e61995.CrossRefGoogle Scholar
  32. Xiong, L. Z., Xu, C. G., Maroof, M. A. F., & Zhang, Q. F. (1999). Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular Genetics and Genomics, 261, 439–446.CrossRefGoogle Scholar
  33. Zhang, Z. K., Li, H., Zhang, Y., Huang, Z. J., Chen, K., & Liu, S. Q. (2010). Grafting enhances copper tolerance of cucumber through regulating nutrient uptake and antioxidative system. Agricultural Sciences in China, 9, 1758–1770.CrossRefGoogle Scholar
  34. Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2011). Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Journal of Hazardous Materials, 189, 414–419.CrossRefGoogle Scholar
  35. Zilberman, D. (2008). The evolving functions of DNA methylation. Current Opinion in Plant Biology, 11, 554–559.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lijin Lin
    • 1
  • Daiyu Yang
    • 2
  • Xun Wang
    • 1
  • Ming’an Liao
    • 2
    Email author
  • Zhihui Wang
    • 2
  • Xiulan Lv
    • 1
  • Fuyi Tang
    • 2
  • Dong Liang
    • 1
  • Hui Xia
    • 1
  • Yunsong Lai
    • 1
  • Yi Tang
    • 1
  1. 1.Institute of Pomology and OlericultureSichuan Agricultural UniversityChengduChina
  2. 2.College of HorticultureSichuan Agricultural UniversityChengduChina

Personalised recommendations