Advertisement

GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran

  • Seyed Amir Naghibi
  • Hamid Reza Pourghasemi
  • Barnali Dixon
Article

Abstract

Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.

Keywords

Spring potential mapping Boosted regression tree Classification and regression tree Random forest GIS Iran 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments on the previous version of the manuscript.

References

  1. Abeare, S. H. M. (2009). Comparisons of boosted regression tree, GLM and GAM performance in the standardization of Yellowfin Tune catch-rate data from the gulf of Mexico Lonline fishery (MSc Thesis, p. 94). Pretoria: Department of Oceanography and Coastal Sciences.Google Scholar
  2. Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., & Muys, B. (2010). Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221, 1119–1130.CrossRefGoogle Scholar
  3. Aertsen, W., Kint, V., Van Orshoven, J., & Muys, B. (2011). Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environmental Modelling and Software, 26(7), 929–937.CrossRefGoogle Scholar
  4. Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computer and Geoscience, 38(1), 23–34.CrossRefGoogle Scholar
  5. Arthur, J. D., Wood, H. A. R., Baker, A. E., Cichon, J. R., & Raines, G. L. (2007). Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Natural Resources Research, 16(2), 93–107.CrossRefGoogle Scholar
  6. Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L., Cánovas-García, F., Martínez-Vicente, D., & Moreno-Brotóns, J. (2013). Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification. Journal of Hydrology, 499, 303–315.CrossRefGoogle Scholar
  7. Beven, K. (1997). TOPMODEL: a critique. Hydrological Process, 11, 1069–1085.CrossRefGoogle Scholar
  8. Beven, K., & Freer, J. (2001). A dynamic TOPMODEL. Hydrological Process, 15(10), 1993–2011.CrossRefGoogle Scholar
  9. Bhat, S., Motz, L. H., Pathak, C., & Kuebler, L. (2015). Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Environmental Monitoring and Assessment, 187(1), 1–15.Google Scholar
  10. Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: modeling with GIS (p. 416). New York: Pergamon inc.Google Scholar
  11. Bou Kheir, R., Wilson, J., & Deng, Y. (2007). Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surface Processes and Landforms, 32(12), 1770–1782.CrossRefGoogle Scholar
  12. Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123–140.Google Scholar
  13. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRefGoogle Scholar
  14. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees (p. 368). New York: Chapman and Hall inc.Google Scholar
  15. Chenini, I., & Ben Mammou, A. (2010). Groundwater recharges study in arid region: an approach using GIS techniques and numerical modeling. Computer and Geosciences, 36(6), 801–817.CrossRefGoogle Scholar
  16. Chenini, I., Ben Mammou, A., & May, M. E. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resources Management, 24(5), 921–939.CrossRefGoogle Scholar
  17. Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30, 231–250.CrossRefGoogle Scholar
  18. Chung, J. W., & Rogers, J. D. (2012). Interpolations of groundwater table elevation in dissected uplands. Groundwater, 50(4), 598–607.CrossRefGoogle Scholar
  19. Clapcott, J., Goodwin, E., & Snelder, T. (2013). Predictive models of benthic macro-invertebrate metrics. Cawthron Report No. 2301. p. 35Google Scholar
  20. Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111, 79–87.CrossRefGoogle Scholar
  21. Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forest for classification in ecology. Ecology, 88, 2783–2792.CrossRefGoogle Scholar
  22. Davoodi Moghaddam, D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences, 8(2), 913–929.CrossRefGoogle Scholar
  23. Demsar, U. (2007). Knowledge Discovery in the Environmental Sciences: Visual and Automatic Data Mining for Radon Problems. Groundwater Transactions in GIS, 11(2), 255–281.CrossRefGoogle Scholar
  24. Dixon, B. (2009). A case study using SVM, NN and logistic regression in a GIS to predict wells contaminated with Nitrate-N. Hydrogeology Journal, 17, 1507–1520.CrossRefGoogle Scholar
  25. Egan, J. P. (1975). Signal detection theory and ROC analysis (p. 277). New York: Academic inc.Google Scholar
  26. Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.CrossRefGoogle Scholar
  27. Friedman, J. H., & Meulman, J. J. (2003). Multiple additive regression trees with application in epidemiology. Statistics in Medicine, 22, 1365–1381.CrossRefGoogle Scholar
  28. Ganapuram, S., Vijaya Kumar, G. T., Murali Krishna, I. V., Kahya, E., & Demirel, M. C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Advances in Engineering Software, 40, 506–518.CrossRefGoogle Scholar
  29. Geissen, V., Kampichler, C., López-de Llergo-Juarez, J. J., & Galindo-Acántara, A. (2007). Superficial and subterranean soil erosion in Tabasco, tropical Mexico: development of a decision tree modeling approach. Geoderma, 139, 277–287.CrossRefGoogle Scholar
  30. Geology Survey of Iran (GSI). (1997). Geology map of the Chaharmahal-e-Bakhtiari Province. http://www.gsi.ir/Main/Lang_en/index.html. Accessed September 2000
  31. Ghayoumian, J., Mohseni, S. M., Feiznia, S., Nourib, B., & Malekian, A. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30, 364–374.CrossRefGoogle Scholar
  32. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
  33. Gupta, M., & Srivastava, P. K. (2010). Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water International, 35, 233–245.CrossRefGoogle Scholar
  34. Gutiérrez, Á. G., Schnabel, S., & Felicisimo, A. M. (2009a). Modelling the occurrence of gullies in rangelands of southwest Spain. Earth Surface Processes and Landforms, 34, 1894–1902.CrossRefGoogle Scholar
  35. Gutiérrez, Á. G., Schnabel, S., & Lavado Contador, J. F. (2009b). Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecologicl Modelling, 220(24), 3630–3637.CrossRefGoogle Scholar
  36. Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15, 361–387.CrossRefGoogle Scholar
  37. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (p. 745). New York: Springer.CrossRefGoogle Scholar
  38. Ho, T. K. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8), 832–844.CrossRefGoogle Scholar
  39. International Institute for Aerospace Survey and Earth Sciences (ITC). (2005). ILWIS 3.3 user guide, www.itc.nl
  40. Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development–an approach. International Journal of Remote Sensing, 24(5), 993–1008.CrossRefGoogle Scholar
  41. Janssen, P. H. M., Heuberger, P. S. C., & Sanders, R. (1994). UNCSAM: a tool for automating sensitivity and uncertainty analysis. Environmental Software, 9(1), 1–11.CrossRefGoogle Scholar
  42. Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management, 21, 427–467.CrossRefGoogle Scholar
  43. Lee, S., Song, K. Y., Kim, Y., & Park, I. (2012). Regional groundwater productivity potential mapping using a geographic information system (GIS) based artificial neural network model. Hydrogeology Journal, 20(8), 1511–1527.CrossRefGoogle Scholar
  44. Leuenberger, M., Kanevski, M., & Orozco, C. D. V. (2013). Forest fires in a random forest. Austria: EGU General Assembly.Google Scholar
  45. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.Google Scholar
  46. Loosvelt, L., Peters, J., Skriver, H., Lievens, H., Van Coillie, F. M. B., De Baets, B., & Verhoest, N. E. C. (2012). Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. International Journal of Applied Earth Observation and Geoinformation, 19, 173–184.Google Scholar
  47. Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Soleiman, W.N.A., & Ramli, M.F. (2012). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences. doi: 10.1007/s12517-012-0795-z
  48. McKay, G., & Harris, J. R. (2015). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectively mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research. doi: 10.1007/s11053-015-9274-z
  49. Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.CrossRefGoogle Scholar
  50. Moisen, G. G., Freeman, E. A., Blackard, J. A., Frescino, T. S., Zimmermann, N. E., & Edwards, T. C. (2006). Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199, 176–187.3.CrossRefGoogle Scholar
  51. Mojiri, H.R., & Zarei, A.R. (2006). The investigation of precipitation condition in the Zagros area and its effects on the central plateau of Iran. The 2nd Conference of Water Resource Management. Tehran, IranGoogle Scholar
  52. Moore, I. D., & Burch, G. J. (1986). Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research, 22(8), 1350–1360.CrossRefGoogle Scholar
  53. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Process, 4, 3–30.CrossRefGoogle Scholar
  54. Murthy, K. S. R., & Mamo, A. G. (2009). Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltelesubbasin, South Ethiopia. International Journal of Remote Sensing, 30, 2729–2740.CrossRefGoogle Scholar
  55. Naghibi, S. A., & Pourghasemi, H. R. (2015). A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resources Management. doi: 10.1007/s11269-015-1114-8
  56. Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Informatics, 8(1), 171–186.CrossRefGoogle Scholar
  57. Nandi, A., & Shakoor, A. (2009). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110, 11–20.CrossRefGoogle Scholar
  58. Negnevitsky, M. (2002). Artificial Intelligence: A Guide to Intelligent Systems (p. 415). England: Addison– Wesley/Pearson Education inc.Google Scholar
  59. Nicodemus, K. K. (2011). Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures predictors from random forest variable importance measures. Brieffings in Bioinformatics, 12, 369–373.CrossRefGoogle Scholar
  60. Oh, H. J., & Lee, S. (2010). Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineering Geology, 115(1–2), 36–48.CrossRefGoogle Scholar
  61. Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172.CrossRefGoogle Scholar
  62. Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning without tears: a primer for ecologists. The Quarterly Review of Biology, 83(2), 171–193.CrossRefGoogle Scholar
  63. Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology Management, 275, 117–129.CrossRefGoogle Scholar
  64. Ozdemir, A. (2011a). GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. Journal of Hydrology, 411, 290–308.CrossRefGoogle Scholar
  65. Ozdemir, A. (2011b). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405, 123–136.CrossRefGoogle Scholar
  66. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.CrossRefGoogle Scholar
  67. Peters, J., Baets, B. D., Verhoest, N. E. C., Samson, R., Degroeve, S., Becker, P. D., & Huybrechts, W. H. (2007). Random forests as a tool for ecohydrological distribution modeling. Ecological Modelling, 207, 304–318.CrossRefGoogle Scholar
  68. Peters, J., Verhoest, N. E. C., Samson, R., Van Meirvenne, M., Cockx, L., & De Baets, B. (2009). Uncertainty propagation in vegetation distribution models based on ensemble classifiers. Ecological Modelling, 220(6), 791–804.CrossRefGoogle Scholar
  69. Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012a). Landslide susceptibility mapping using index of entropy and conditional probability models in GS: Safarood Basin, Iran. Catena, 97, 71–84.CrossRefGoogle Scholar
  70. Pourghasemi, H. R., Gokceoglu, C., Pradhan, B., & Deylami Moezzi, K. (2012b). Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In B. Pradhan & M. Buchroithner (Eds.), Terrigenous mass movements (pp. 23–49). Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-25495-6-2.CrossRefGoogle Scholar
  71. Pourtaghi, Z. S., & Pourghasemi, H. R. (2014). GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3), 643–662.CrossRefGoogle Scholar
  72. Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.CrossRefGoogle Scholar
  73. R Development Core Team. (2006). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computisng.Google Scholar
  74. Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H.R., & Zeinivand, H. (2014). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences doi: 10.1007/s12517-014-1668-4
  75. Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2015). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. doi: 10.1016/j.catena.2015.10.010
  76. Razandi, Y., Pourghasemi, H.R., Samani Neisani, N., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, doi: 10.1007/s12145-015-0220-8
  77. Refsgaard, J. C., Van Der Sluijs, J. P., Hojberg, A. L., & Vanrolleghem, P. A. (2007). Uncertainty in the environmental modelling process e A framework and guidance. Environmental Modelling & Software, 22, 1543–1556.CrossRefGoogle Scholar
  78. Ridgeway, G. (2006). Generalized Boosted Regression Models. Documentation on the R Package ‘gbm’, version 1.5-7, Available at: http://www.i- pensieri.com/gregr/gbm.shtml
  79. Rodriguez-Galiano, V., Mendes, M. P., Jose Garcia-Soldado, M., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476, 189–206.CrossRefGoogle Scholar
  80. Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94, 314–324.CrossRefGoogle Scholar
  81. Saha, D., Dhar, Y. R., & Vittala, S. S. (2010). Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India. Environmental Monitoring and Assessment, 165, 179–191.CrossRefGoogle Scholar
  82. Saltelli, A., Chan, K., & Scott, E. M. (2000). Sensitivity Analysis. New York: Wiley.Google Scholar
  83. Schapire, R. E. (2003). The boosting approach to machine learning: an overview. Nonlinear Estimation and Classification, 171, 149–171.CrossRefGoogle Scholar
  84. Solomon, S., & Quiel, F. (2006). Groundwater study using remote sensing and geographic information systems (GIS) in central highlands of Eritrea. Hydrogeology Journal, 14(5), 729–741.CrossRefGoogle Scholar
  85. Srivastava, P. K., & Bhattacharya, A. K. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing, 27, 4599–4620.CrossRefGoogle Scholar
  86. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics. doi: 10.1186/1471-2105-9-307
  87. Stumpf, A., & Kerle, N. (2011a). Object-oriented mapping of landslides using random forests. Remote Sensing Environment, 115(10), 2564–2577.CrossRefGoogle Scholar
  88. Stumpf, A., & Kerle, N. (2011b). Combining Random Forests and object-oriented analysis for landslide mapping from very high resolution imagery. Procedia Environmental Sciences, 3, 123–129.CrossRefGoogle Scholar
  89. Thuiller, W., & Lafourcade, B. (2009). BIOMOD: species/climate modelling functions. R Package Version 1.1-3/r118Google Scholar
  90. Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed., p. 656). New Jersey: John Wiley and Sons inc.Google Scholar
  91. Trigila, A., Frattini, P., Casagli, N., Catani, F., Crosta, G., Es-positon, C., Iadanza, C., Lagomarsino, D., Scarascia Mugnozza, G., Segoni, S., Spizzichino, D., Tofani, V., & Lari, S. (2013). Landslide susceptibility mapping at national scale: the Italian case study. Landslide Sciences Practice, 1, 287–295.CrossRefGoogle Scholar
  92. Varouchakis, E. (2015). Integrated water resources analysis at Basin scale: a case study in Greece. Journal of Irrigation and Drainage Engineering,  10.1061/(ASCE)IR.1943-4774.0000966, 05015012.
  93. Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides? Ecological Modelling, 239, 27–39.CrossRefGoogle Scholar
  94. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge Information System, 14, 1–37.CrossRefGoogle Scholar
  95. Yesilnacar, E.K. (2005). The Application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis. Department of Geomatics the University of MelbourneGoogle Scholar
  96. Zipkin, E. F., Grant, E. H. C., & Fagan, W. F. (2012). Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecological Applications, 22, 1962–1972.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Seyed Amir Naghibi
    • 1
  • Hamid Reza Pourghasemi
    • 2
  • Barnali Dixon
    • 3
  1. 1.Department of Watershed Management Engineering, College of Natural ResourcesTarbiat Modares UniversityNoorIran
  2. 2.Department of Natural Resources and Environmental Engineering, College of AgricultureShiraz UniversityShirazIran
  3. 3.Department of Environmental Science, Policy and GeographyUniversity of South FloridaSaint PetersburgUSA

Personalised recommendations