Modelling the regional variability of the probability of high trihalomethane occurrence in municipal drinking water

  • Geneviève Cool
  • Alexandre Lebel
  • Rehan Sadiq
  • Manuel J. Rodriguez


The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1 %. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).


Drinking water Trihalomethanes Regional variability Multilevel modelling Ecosystems Climate 


  1. Ågren, A., Buffam, I., Bishop, K., & Laudon, H. (2010). Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. Journal of Geophysical Research, 115(G01012), 12 pp. doi:10.1029/2009JG001013.
  2. Ågren, A., Buffam, I., Jansson, M., & Laudon, H. (2007). Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. Journal of Geophysical Research, 112(G03003), 11p. doi:10.1029/2006JG000381.
  3. Brown, D., Bridgeman, J., & West, J. R. (2011). Predicting chlorine decay and THM formation in water supply systems. Reviews in Environmental Science and Bio/Technology, 10, 79–99. doi:10.1007/s11157-011-9229-8.CrossRefGoogle Scholar
  4. Canham, C. D., Pace, M. L., Papaik, M. J., Primack, A. G. B., Roy, K. M., Maranger, R. J., et al. (2004). A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecological Applications, 14(3), 839–854.CrossRefGoogle Scholar
  5. CEAEQ 2009. Méthode d’analyse: détermination des trihalométhanes dans l’eau : dosage par « purge and trap » couplé à un chromatographe en phase gazeuse et à un spectromètre de masse. Gouvernement du Québec.Google Scholar
  6. CEAEQ 2010. Programme d'accréditation des laboratoires d’analyse (PALA). Quebec Ministry of the Environment. Accessed 10 November 2015.
  7. Chang, E. E., Guo, H. C., Li, I. S., Chiang, P. C., & Huang, C. P. (2010). Modeling the formation and assessing the risk of disinfection by-products in water distribution systems. Journal of Environmental Science and Health, Part A, 45(10), 1185–1194. doi:10.1080/10934529.2010.493776.CrossRefGoogle Scholar
  8. Chen, D.-R., & Truong, K. (2012). Using multilevel modeling and geographically weighted regression to identify spatial variations in the relationship between place-level disadvantages and obesity in Taiwan. Applied Geography, 32, 737–745.CrossRefGoogle Scholar
  9. Clair, T. A., Ehrman, J. M., & Higuchi, K. (1999). Changes in freshwater carbon exports from Canadian terrestrial basins to lakes and estuaries under a 2xCO2 atmospheric scenario. Global Biogeochemistry Cycles, 13(4), 1091–1097.CrossRefGoogle Scholar
  10. Clark, M. J., Cresser, M. S., Smart, R., Chapman, P. J., & Edwards, A. C. (2004). The influence of catchment characteristics on the seasonality of carbon and nitrogen species concentrations in upland rivers of northern Scotland. Biogeochemistry, 68, 1–19.CrossRefGoogle Scholar
  11. Cool, G., Lebel, A., Sadiq, R., & Rodriguez, M. J. (2014). Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water. Science of the Total Environment, 490, 947–956. doi:10.1016/j.scitotenv.2014.05.091.CrossRefGoogle Scholar
  12. D’Arcy, P., & Carignan, R. (1997). Influence of catchment topography on water chemistry in southeastern Québec shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54, 22155–22227.Google Scholar
  13. Duncan C. (1997). Applying mixed multivariate multilevel models in geographical research. In G. Westert and R Verhoeff (Eds), Places and people: multilevel modeling in geographical research (pp. 100–117). Utrecht, Netherlands: Nederlandse Geografishce Studies, 227.Google Scholar
  14. Eckhardt, B. W., & Moore, T. R. (1990). Controls of dissolved organic carbon concentrations in streams, southern Quebec. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1537–1544.CrossRefGoogle Scholar
  15. Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137, 55–71. doi:10.1016/j.envpol.2004.12.031.CrossRefGoogle Scholar
  16. Government of Quebec (2009). Règlement sur la qualité de l’eau potable. RQLQ, c. Q-2, R.18.1.1.Google Scholar
  17. Government of Quebec (2014). Règlement sur la qualité de l’eau potable. c. Q-2, r40. Annexe 4 : Normes de prélèvement et de conservation des échantillons d’eau (art. 30). Les Publications du Québec.Google Scholar
  18. Gray, N. F. (2008). Drinking water quality: problems and solutions (2nd ed., ). Cambridge, UK: Cambridge University Press.Google Scholar
  19. Health Canada (2006). Recommandation pour la qualité de l’eau potable au Canada: document technique: Les trihalométhanes. Government of Canada. Accessed 24 November 2014.
  20. Hua, G., & Reckhow, D. A. (2008). DBP formation during chlorination and chloramination: effect of reaction time, pH, dosage and temperature. American Water Works Association Journal, 100(8), 82–95.Google Scholar
  21. IPCC (2013). Résumé à l’intention des décideurs, changements climatiques 2013: Les éléments scientifiques. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Contribution du groupe de travail I au cinquième rapport d’évaluation du groupe d’experts intergouvernemental sur l’évolution du climat. Cambridge, UK: Cambridge University Press.Google Scholar
  22. Khan, H. R., & Shaw, J. E. H. (2011). Multilevel logistic regression analysis applied to binary contraceptive prevalence data. Journal of Data Science, 9, 93–110.Google Scholar
  23. King, W. D., Dodds, L., & Allen, A. C. (2000). Relation between stillbirth and specific chlorination by-products in public water supplies. Environmental Health Perspectives, 108(9), 883–886.CrossRefGoogle Scholar
  24. Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology, 198, 239–248.CrossRefGoogle Scholar
  25. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. E., Chinn, R., Sclimenti, M. I., et al. (2006). Occurrence of new generation of disinfection byproducts. Environmental Science and Technology, 40, 7175–7185. doi:10.1021/es060353j.CrossRefGoogle Scholar
  26. Laudon, H., Berggren, M., Ågren, A., Buffam, J., Bishop, K., Grabs, T., et al. (2011). Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling. Ecosystems, 14, 880–893.CrossRefGoogle Scholar
  27. Li T., Ducruc J.P. (1999). Les provinces naturelles: Niveau 1 du cadre écologique de référence du Québec. Québec Ministry of the Environment. Accessed 7 July 2014.
  28. Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advanced in Colloid and Interface Science, 159, 189–197. doi:10.1016/j.cis.2010.06.007.CrossRefGoogle Scholar
  29. Mcbean, E., Zhu, Z., & Zeng, W. (2008). Systems analysis models for disinfection by-product formation in chlorinated drinking water in Ontario. Civil Engineering and Environmental Systems, 25(2), 127–138. doi:10.1080/1028660080108915.CrossRefGoogle Scholar
  30. MDDELCC (2006). Guide de conception des installations de production d’eau potable. Québec Ministry of the Environment. Accessed 18 August 2014.
  31. MDDELCC (2010a - acquired in). Banque informatisée eau potable 2006-2009: Database, Government of Québec, Québec, Canada.Google Scholar
  32. MDDELCC (2010b). Répertoire des stations municipales de production d’eau potable approvisionnées en eau de surface. Québec Ministry of the Environment. Accessed 7 July 2014.
  33. MDDELCC (2010c - acquired in). Climate data 2005-2009: Database, Government of Quebec, Quebec, Canada.Google Scholar
  34. Merlo, J., Chaix, B., Ohlsson, H., Beckman, A., Johnell, K., Hjerpe, P., et al. (2006). A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiological Community and Health, 60, 290–297.CrossRefGoogle Scholar
  35. Milot, J., Rodriguez, M. J., & Sérodes, J. B. (2000). Modeling the susceptibility of drinking water utilities to form high concentrations of trihalomethanes. Journal of Environmental Management, 60, 155–171. doi:10.1006/jema.2000.0368.CrossRefGoogle Scholar
  36. Mukundan, R., & Van Dreason, R. (2014). Predicting trihalomethanes in the New York City water supply. Journal of Environmental Quality, 43, 611–616. doi:10.2134/jeq2013.07.0305.CrossRefGoogle Scholar
  37. Mullholland P.J. (2003). Large-scale patterns in dissolved organic carbon concentration, flux and sources. In: Aquatic Ecosystems: Interactivity of dissolved organic matter. S.E.G. Finlay, R.L. Sinsabaugh [Eds]. Academic Press, Elsevier Science, San Diego, CA: 806–819.Google Scholar
  38. Perdue, E. M. (2009). Natural organic matter. In: Lkens G.E., editor. Encyclopedia of inland waters. San Diego, California, US: Academic Press (pp. 806–819). Science: Elsevier.Google Scholar
  39. Perera, A. A. P. N. M., Sooriyaracchi, M. R., & Wickramasuriya, S. L. (2014). A goodness of fit test for the multilevel logistic model. Communications in. Statistics: Simulation and Computation. doi:10.1080/03610918.2013.868906.Google Scholar
  40. Rasbash, J., Steele, F., Browne, W. J., & Goldstein, H. (2009). A User’s Guide to MLwiN, Version 2.10. Bristol, UK: Centre for Multilevel Modelling, University of Bristol.Google Scholar
  41. Rasbash, J., Browne, W., Cameron, B., & Charlton, C. (2013). MLwiN: version 2.27 [Software]. Bristol, UK: Centre for Multilevel Modeling, University of Bristol.Google Scholar
  42. Reckhow, D. A., Rees, P. L. S., & Bryan, D. (2004). Watershed sources of disinfection by-product precursors. Water Science and Technology: Water Supply, 4(4), 61–69.Google Scholar
  43. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636, 178–242. doi:10.1016/j.mrrev.2007.09.001.CrossRefGoogle Scholar
  44. Richardson, S. D., & Postigo, C. (2012). Drinking water disinfection by-products. In D. Barceló (Ed.), The handbook of environmental chemistry: emerging contaminants and human health (pp. 93–138). New York: Springer.Google Scholar
  45. Rodriguez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158, 73–89.CrossRefGoogle Scholar
  46. Rodriguez, M. J., Sérodes, J.-B., Levallois, P., & Proulx, F. (2007). Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location. Journal of Environmental Engineering, 6, 355–365. doi:10.1139/S06-055.CrossRefGoogle Scholar
  47. Rodriguez, M. J., & Sérodes, J.-B. (2001). Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Research, 35(6), 1572–1586.CrossRefGoogle Scholar
  48. Rook, J. J. (1974). Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 4(23), 234–243.Google Scholar
  49. Singer, P. C. (1994). Control of disinfection by-products in drinking water. Journal of Environmental Engineering, 120, 727–744.CrossRefGoogle Scholar
  50. Subramanian, S. V. (2004). The relevance of multilevel statistical methods for identifying causal neighborhood effects. Social Science and Medecine, 58, 1961–1967.CrossRefGoogle Scholar
  51. Summerhayes, R. J., Morgan, G. G., Lincoln, D., Edwards, H. P., Earnest, A., Rahman, M. B., et al. (2011). Spatio-temporal variations in trihalomethanes in New South Wales. Water Research, 45, 5715–5726.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Geneviève Cool
    • 1
  • Alexandre Lebel
    • 1
  • Rehan Sadiq
    • 2
  • Manuel J. Rodriguez
    • 1
  1. 1.École supérieure d’aménagement du territoire et développement regionalUniversité LavalQuébecCanada
  2. 2.School of EngineeringUniversity of British-ColumbiaOkanaganCanada

Personalised recommendations