Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models

Article

Abstract

In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta’s land and population, this study corrected the DEM’s elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM’s vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km2 of cropland, 1280 km2 of vegetation, 205 km2 of wetland, 146 km2 of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km2 (6 %) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM’s elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region.

Keywords

SRTM DEM ASTER-GDEM Sea level rise Climate changes And Nile Delta Egypt 

Abbreviations

SLR

Sea Level Rise

DEM

Digital Elevation Model

SRTM

Shuttle Radar Topographic Mission

ASTER-GDEM

Advanced Spaceborne Thermal Emission and Reflection Radiometer- Global DEM

GPS

Global Position System

MODIS

Moderate Resolution Imaging Spectroradiometer

GPWv3

Gridded Population of the Worlds version3

LULC

Land Use Land Cover

MCD12Q1

Standard MODIS Land Cover product

IGBP

International Geosphere Biosphere Program

SEDAC

Socioeconomic Data and Applications Center

CAPMAS

Central Agency for Public Mobilization and Statistics

ME

Mean Error

References

  1. Agrawala, S., Moehner, A., El Raey, M., Conway, D., Van Aalst, M., Hagenstad, M. and Smith, J. (2004). Development and climate change in Egypt: focus on coastal resources and the Nile.Google Scholar
  2. Akbari, A., Ramli, N.I.B. and Kong, N.S. (2015). Application of public domain satellite-based DEMs in natural hazard modeling. International Journal of Environmental Science and Development, 7(2).Google Scholar
  3. AL-Harbi, S. D., & Tansey, K. (2007). The accuracy of a DEM derived from ASTER data using differential GPS measurements, ISPRS Hannover workshop 2007. ISPRS.Google Scholar
  4. ASTER-GDEM (2011). ASTER global digital elevation model version 2 – summary of validation results. NASA LPDAAC & JPL, pp., 1–27.Google Scholar
  5. Band, L. E. (1986). Topographic partition of watersheds with digital elevation models. Water Resources Research, 22(1), 15–24.CrossRefGoogle Scholar
  6. Becker, R. H., & Sultan, M. (2009). Land subsidence in the Nile delta: inferences from radar interferometry. The Holocene, 19, 949–954.CrossRefGoogle Scholar
  7. Blankespoor, B., Dasgupta, S. & Laplante, B. (2012). Sea-Level Rise and Coastal Wetlands Impacts and Costs. Policy Research Working Paper 6277.Google Scholar
  8. Bohannon, J. (2010). Climate change. The Nile delta’s sinking future. Science, 327(5972), 1444–1447.CrossRefGoogle Scholar
  9. Brown, S., Abiy, S., Kebede, A., & Nicholls, R. J. (2011). Sea-level rise and impacts in Africa, 2000 to 2100. UK: University of Southampton.Google Scholar
  10. Burrough, P., McDonnell, R., & Burrough, P. (1998). Principles of geographical information systems. Oxford: Oxford University Press.Google Scholar
  11. CAPMAS (2014). Central agency for public mobilization and statistics.Google Scholar
  12. Chirico, P. G. (2004). An evaluation of SRTM, ASTER, and contour-based DEMS in the Caribbean region. URISA Caribbean GIS Conference.Google Scholar
  13. Dasgupta, S., Laplante, B., Meinsner, C., Wheeler, D., & Yan, J. (2007). The impact of sea level rise on developing countries: a comparative analysis. Climate Change, 93(3–4), 379–388.Google Scholar
  14. Dasgupta, S., Laplante, B., Murray, S. & Wheeler, D. (2009). Sea-Level Rise and Storm Surges A Comparative Analysis of Impacts in Developing Countries. Policy Research Working Paper 4901.Google Scholar
  15. Ehlschlaeger, C. R. (1998). The stochastic simulation approach: tools for representing spatial application uncertainty. Santa Barbara: University of California.Google Scholar
  16. El Raey, M. (1997). Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise. Ocean & Coastal Manaoemen, 37(1), 29–40.CrossRefGoogle Scholar
  17. El Raey, M. (1999). Egypt: coastal zone development and climate change: impact of climate change on Egypt.Google Scholar
  18. El Raey, M. (2010). Impacts and implications of climate change for the coastal zones of Egypt. In D. Michel, & A. Pandya (Eds.), The henry L (pp. 31–50). Washington, DC: Stimson Center.Google Scholar
  19. ENVI (2008). User’s guide. ITT Visual Information Solutions: ENVI on-line software user’s manual.Google Scholar
  20. FitzGerald, D. M., Fenster, M. S., Argow, B. A., & Buynevich, I. V. (2008). Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences, 36(1), 601–647.CrossRefGoogle Scholar
  21. Geocontext (2010). Nile Delta shoreline profile.Google Scholar
  22. Gerald, F., & Ben, M. (2012). Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana – implications for hydrological and environmental modeling. Studies on Environmental and Applied Geomorphology.Google Scholar
  23. Gornitz, V. (1991). Global coastal hazards from future sea level rise. Glob. Planet. Change, 89, 379–398.CrossRefGoogle Scholar
  24. Guth, P. L. (2010). Geomorphometric comparison of ASTER GDEM and SRTM. ASPRS, Orlando, Florida: ASPRS/CaGIS.Google Scholar
  25. Hereher, M. E. (2010). Vulnerability of the Nile delta to sea level rise: an assessment using remote sensing. Geomatics, Natural Hazards and Risk, 1(4), 315–321.CrossRefGoogle Scholar
  26. IPCC (2001). The scientific basis (p. 881). Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  27. Jelínek, R. B., Eckert, S., Zeug, G., & Krausmann, E. (2009). Tsunami vulnerability and risk analysis applied to the city of Alexandria, Egypt, institute for the protection and security of the. Italy: Citizen.Google Scholar
  28. Jenson, S. K. (1991). Applications of hydrologic information automatically extracted from digital elevation models. Hydrological Processes, 5(1), 31–44.CrossRefGoogle Scholar
  29. JPL (2014). SRTM, U.S. Releases Enhanced Shuttle Land Elevation Data.Google Scholar
  30. Leon, J.X., Heuvelink, G.B.M. & Phinn, S.R. (2014). Incorporating DEM Uncertainty in Coastal Inundation Mapping. PLoS ONE 9 (9:e108727).Google Scholar
  31. Maidment, D. R. (2002). Arc hydro: GIS for water resources. Redlands, California: Environmental Systems Research Institute, Inc.Google Scholar
  32. Martz, L. W., & Garbrecht, J. (1992). Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 18(6), 747–761.CrossRefGoogle Scholar
  33. Meshref, W. M. (1990). Tectonic framework. In R. Said (Ed.), The geology of Egypt (pp. 381–389). Netherlands: Rotterdam.Google Scholar
  34. Moore, I. D., Grayson, R., & Ladson, A. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.CrossRefGoogle Scholar
  35. Nikolakopoulos, K. G., Kamaratakis, E. K., & Chrysoulakis, N. (2006). SRTM vs ASTER elevation products. Comparison for two regions in Crete. Greece. International Journal of Remote Sensing, 27(21), 4819–4838.CrossRefGoogle Scholar
  36. Nuth, C., & Kaab, A. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5, 271–290.CrossRefGoogle Scholar
  37. Oksanen, J. (2006). Digital elevation model error in terrain analysis (p. p. 369). Finlad: University of Helsinki.Google Scholar
  38. Oksanen, J., & Sarjakoski, T. (2005). Error propagation of DEM-based surface derivatives. Computers & Geosciences, 31(8), 1015–1027.CrossRefGoogle Scholar
  39. Poulter, B., & Halpin, P. N. (2008). Raster modelling of coastal flooding from sea-level rise. International Journal of Geographical Information Science, 22(2), 167–182.CrossRefGoogle Scholar
  40. Radwan, A. A., & El-Geziry, T. M. (2013). Some statistical characteristics of surges at Alexandria. Egypt. JKAU: Mar. Sci, 24(2), 31–38.Google Scholar
  41. Reuter, H. I., Hengl, T., Gessler, P., & Soille, P. (2009). Preparation of DEMs for geomorphometric analysis. In H. Tomislav, & I. R. Hannes (Eds.), Geomorphometry: concepts (pp. 87–120). Software, Applications: Elsevier.CrossRefGoogle Scholar
  42. Rosetta(2010). Egypt’s Nile delta falls prey to climate change. Al Arabiya News.Google Scholar
  43. SEDAC (2013). Gridded population of the world (GPW), V3. http://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3.Google Scholar
  44. Sefercik, U., Jacobsen, K., Oruc, M., & Marangoz, A. (2007). Comparison of spot, SRTM and ASTER DEMS, ISPRS Hannover workshop 2007. ISPRS.Google Scholar
  45. Simonett, O. (2012). Potential impact of sea level rise: Nile Delta, UNEP/GRID; G. Sestini, Florence; Remote Sensing Center, Cairo; DIERCKE Weltwirtschaftsatlas.Google Scholar
  46. Snoussi, M., Ouchani, T., & Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77(2), 206–213.CrossRefGoogle Scholar
  47. SRTM-DEM, 2006. Shuttle radar topography mission DTED level 1 (3-arc second) documentation. NASA/LPDAAC and USGS/EROS, pp. 1–8.Google Scholar
  48. Stanley, D. J. (1996). Nile delta: extreme case of sediment entrapment. Journal of Marine Geology, 129, 189–195.CrossRefGoogle Scholar
  49. Stanley, J. D. (2005). Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditerranée, 104, 64–73.Google Scholar
  50. Suwandana, E., Kawamura, K., Sakuno, Y., Kustiyanto, E., & Raharjo, B. (2012). Evaluation of ASTER GDEM2 in comparison with GDEM1, SRTM DEM and topographic-map-derived DEM using inundation area analysis and RTK-dGPS data. Remote Sensing, 4(12), 2419–2431.CrossRefGoogle Scholar
  51. Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrological Processes, 14(11–12), 1909–1929.CrossRefGoogle Scholar
  52. Wu, S., Li, J., & Huang, G. (2008). A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Applied Geography, 28(3), 210–223.CrossRefGoogle Scholar
  53. Xuejun, L., & Lu, B. (2008). Accuracy assessment of DEM slope algorithms related to spatial autocorrelation of DEM errors. In B. Lees, & G.-a. Tang (Eds.), Q. Zhou (pp. 307–322). Springer-Verlag Berlin Heidelberg: Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography.Google Scholar
  54. Yalciner, A. C., Zaytsev, A., Aytore, B., Heidarzadeh, M., Kian, R., & Imamura, F. (2014). A possible submarine landslide and associated tsunami at the northwest Nile delta, Mediterranean sea. Oceanography, 27(2), 68–75.CrossRefGoogle Scholar
  55. Zandbergen, P. A. (2011). Error propagation modeling for terrain analysis using dynamic simulation tools in ArcGIS modelbuilder. Geomorphometry.org.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Civil Engineering and Environmental SciencesThe University of OklahomaNormanUSA
  2. 2.Advanced Radar Research CenterThe University of OklahomaNormanUSA
  3. 3.Geology Department, Faculty of scienceDamietta UniversityNew DamiettaEgypt
  4. 4.Hydrometrology and Remote Sensing laboratory (HyDROS lab)Advanced Radar Research Center (ARRC)NormanUSA

Personalised recommendations