Advertisement

Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal

  • Catarina Cruzeiro
  • Miguel Ângelo Pardal
  • Eduardo Rocha
  • Maria João Rocha
Article

Abstract

Two novel methods were developed to extract and quantify 56 pesticides in surface waters, considering their content in both dissolved aqueous phase (DAP) and suspended particulate matter (SPM) fractions. These procedures were applied to coastal samples taken seasonally during 2012–2013, from three strategic sampling sites along the Ria Formosa Lagoon (south of Portugal). Briefly, 500 mL of water samples were filtrated, separating both fractions. The DAP fraction was extracted and pre-concentrated by solid-phase extraction (SPE), while the SPM was extracted using ultrasonic extraction technique (USE). Both fractions were then analyzed, and the pesticides were quantified and identified, within 35 min, by gas chromatography (GC) coupled to mass spectrometry (GC-MS and GC-MS/MS), respectively. The extraction of pesticides from the SPM fraction showed average recoveries of 102 %, detection limits below 2.2 ng/L, and quantification limits ranging from 0.3 to 6.6 ng/L. Considering the real water samples, 73 % of the selected pesticides were quantified in both DAP and SPM fractions (ΣDAP+SPM 2.3 μg/L) and their maximum levels were measured in autumn and winter. By category, the global loads of fungicides, herbicides, and insecticides were ≈407, ≈323, and ≈1.6 μg/L, respectively. Thirty-one percent of the quantified pesticides exceeded the European directives levels (2008/105/EC and 98/83/EC). From the total loads, the SPM fraction contribution was 32 %, showing the importance of measuring pesticides in that fraction. The water physicochemical parameters revealed that the total nitrogen amounts were very high relatively to the legal required values, mainly close to the city of Faro (2.6 mg/L). In light of the above, measures are in need to meet European directives and protect both fauna and humans that use this area for leisure.

Keywords

Dissolved aqueous phase Environmental monitoring GC-MS/MS Lagoon Pesticides Surface waters Suspended particulate matter Ultrasonic extraction 

Notes

Acknowledgments

This study was partially supported by the European Regional Development Fund (ERDF), through the Competitiveness and Trade Expansion Program (COMPETE), and by national funds provided by the Foundation for Science and Technology (FCT), via the grant SFRH/BD/79305/2011 and projects PTDC/MAR/70436/2006 (FCOMP-01-0124.FEDER.7382) and PEst-C/MAR/LA0017/2013. Final support was obtained from the Strategic Funding UID/Multi/04423/2013 project, through national funds provided by FCT and ERDF, in the framework of the program PT2020. We are grateful to Eng. Bartolomeu Pereira (UNICAM Sistemas Analíticos, Lda) for his precious technical advices.

Supplementary material

10661_2015_4824_MOESM1_ESM.xlsx (21 kb)
ESM 1 (XLSX 20.5 kb)

References

  1. Anvisa. Resolução RE n°899 de 29/05/2003; Diário Oficial da União, Brasília, DF, 02/06/2003, seção 1 - Agência Nacional de Vigilância Sanitária aprova o Guia para validação de métodos analíticos e bioanalíticos. (in Portuguese).Google Scholar
  2. Barriada-Pereira, M., González-Castro, M. J., Muniategui-Lorenzo, S., López-Mahía, P., Prada-Rodríguez, D., & Fernández-Fernández, E. (2005). Organochlorine pesticides accumulation and degradation products in vegetation samples of a contaminated area in Galicia (NW Spain). Chemosphere, 58(11), 1571–1578. doi: 10.1016/j. chemosphere .2004.10.016.CrossRefGoogle Scholar
  3. Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., Harrison, C., et al. (2012). Developing environment-specific water quality guidelines for suspended particulate matter. Water Research, 46(7), 2324–2332. doi: 10.1016/j.watres.2012.01.055.CrossRefGoogle Scholar
  4. Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of Hazardous Materials, 239–240(0), 32–39. doi: 10.1016/j.jhazmat.2012.07.032.CrossRefGoogle Scholar
  5. Cachola, R. A., & Campos, C. J. A. d. (2006). Relatórios científicos e técnicos: Refefinição das zonas de produção de bivalves dos sistemas lagunares do Algarve no âmbito do programa de monitorização microbiológica. In s. digital (Ed.), Relatórios Científicos e Técnicos. (Vol. 31, pp. 44). Lisboa: IPIMAR (in Portuguese).Google Scholar
  6. Chopra, A. K., Sharma, M., & Chamoli, S. (2011). Bioaccumulation of organochlorine pesticides in aquatic system—an overview. Environmental Monitoring and Assessment, 173(1–4), 905–916. doi: 10.1007/s10661-010-1433-4.CrossRefGoogle Scholar
  7. Claver, A., Ormad, P., Rodríguez, L., & Ovelleiro, J. L. (2006). Study of the presence of pesticides in surface waters in the Ebro river basin (Spain). Chemosphere, 64(9), 1437–1443. doi: 10.1016/j.chemosphere.2006.02.034.CrossRefGoogle Scholar
  8. Comoretto, L., Arfib, B., & Chiron, S. (2007). Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Science of the Total Environment, 380(1–3), 124–132. doi: 10.1016/j.scitotenv.2006.11.046.CrossRefGoogle Scholar
  9. Cravo, A., Lopes, B., Serafim, A., Company, R., Barreira, L., Gomes, T., et al. (2009). A multibiomarker approach in Mytilus galloprovincialis to assess environmental quality. Journal of Environmental Monitoring, 11(9), 1673–1686. doi: 10.1039/B909846A.CrossRefGoogle Scholar
  10. Cruzeiro, C., Rocha, E., Pardal, M. A., & Rocha, M. J. (2015). Temporal monitoring studies (2010–2013) of pesticides under the European Water Framework directives—the Ria Formosa Lagoon (Portugal) as a case study. (Congress ed., pp. 1). Aveiro, Portugal: IV Encontro Nacional de Pós-Graduação em Ciências Biológicas (scientific meeting). (in Portuguese).Google Scholar
  11. DRAP (2014). Direção Regional de Agricultura e Pescas do Algarve. http://www.drapalg.min-agricultura.pt. Acessed 18 August 2015. (in Portuguese).Google Scholar
  12. Dueri, S., Castro-Jiménez, J., & Comenges, J.-M. Z. (2008). On the use of the partitioning approach to derive Environmental Quality Standards (EQS) for persistent organic pollutants (POPs) in sediments: a review of existing data. Science of the Total Environment, 403(1–3), 23–33. doi: 10.1016/j.scitotenv.2008.05.016.CrossRefGoogle Scholar
  13. Durborow, R. M., Crosby, D. M., & Brunson, M. W. (1997). Ammonia in fish ponds. Southern Regional Aquaculture Center, 463. Google Scholar
  14. Ehrlich, G., Jöhncke, U., Drost, W., & Schulte, C. (2011). Problems faced when evaluating the bioaccumulation potential of substances under REACH. Integrated Environmental Assessment and Management, 7(4), 550–558. doi: 10.1002/ieam.190.CrossRefGoogle Scholar
  15. EPA (2014). Update of Human health ambient water quality criteria: hexachlorocyclopentadiene (77-47-4). In Office of water (Ed.), (Vol. EPA 820-R-15-051, pp. 26). Washington, DC 20460: United States Environmental Protection Agency.Google Scholar
  16. Estévez, E., Cabrera, M. D. C., Molina-Díaz, A., Robles-Molina, J., & Palacios-Díaz, M. D. P. (2012). Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Science of the Total Environment, 433, 538–546. doi: 10.1016/j.scitotenv.2012.06.031.CrossRefGoogle Scholar
  17. EU (2007). Hexachlorocyclopentadiene. In European Union Risk Assessment Report (Ed.), 77-47-4 (pp. 175). Luxembourg: European Communities.Google Scholar
  18. EU. (2008a). Directive 2008/105/EC of the European parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing council directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending directive 2000/60/EC of the European parliament and of the council. Official Journal of the European Union, L348, 84–97.Google Scholar
  19. EU (2008b). EU—pesticides database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database. Acessed 18 August 2015.Google Scholar
  20. EU (2010). European Commission. Guidance document on pesticides residue analytical methods. In Directorate General Health and Consumer Protection (Ed.), (Vol. SANCO/825/00 rev 8.1, pp. 27).Google Scholar
  21. EU. (2013). Directive 2013/39/EU of the European parliament and of the council of 12 August 2013: amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 226, 1–17.Google Scholar
  22. EU (1998). Council of the European Union. (1998). Directive 98/83/EC on the quality of water intended for human consumption. Official Journal of the European Communities, L330, 32–54.Google Scholar
  23. Ferreira, J. G., Simas, T., Nobre, A., Silva, M. C., Shifferegger, K., & Lencart-Silva, J. (2003). Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems. Application of the United States national estuarine eutrophication assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana systems. In INAG and IMAR (Ed.), (pp. 165): NEEA.Google Scholar
  24. Freitas, L. L., Sant’Anna, E. S., Suchara, E. A., Benato, V. S., & Carasek, E. (2011). Pendimethalin in surface waters of rivers in the proximity of irrigated paddy fields by solid phase microextraction and gas chromatography. International Journal of Environmental Analytical Chemistry, 92(3), 313–323. doi: 10.1080/03067310903582309.CrossRefGoogle Scholar
  25. Gonçalves, C., & Alpendurada, M. F. (2005). Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography–mass spectrometry. Talanta, 65(5), 1179–1189. doi: 10.1016/j.talanta.2004.08.057.CrossRefGoogle Scholar
  26. Gonçalves, C. M., Esteves da Silva, J. C. G., & Alpendurada, M. F. (2007). Evaluation of the pesticide contamination of groundwater sampled over two years from a vulnerable zone in Portugal. Journal of Agricultural and Food Chemistry, 55(15), 6227–6235. doi: 10.1021/jf063663u.CrossRefGoogle Scholar
  27. Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8, 339–357.CrossRefGoogle Scholar
  28. ICH (2006). Validation of analytical procedures: text and methodology, Q2 (R1). In International Conference on Harmonization (Ed.), pp. 13Google Scholar
  29. ICN (2005). Plano de ordenamento do parque natural da Ria Formosa- diagnóstico. Olhão: Instituto da Conservação da Natureza (ICN) (in Portuguese).Google Scholar
  30. Inoue, T., Ebise, S., Numabe, A., Nagafuchi, O., & Matsui, Y. (2002). Runoff characteristics of particulate pesticides in a river from paddy fields. Water Science & Technology, 45(9), 121–126.Google Scholar
  31. Jiang, X., Martens, D., Schramm, K. W., Kettrup, A., Xu, S. F., & Wang, L. S. (2000). Polychlorinated organic compounds (PCOCs) in waters, suspended solids and sediments of the Yangtse River. Chemosphere, 41(6), 901–905. doi: 10.1016/S0045-6535(99)00435-X.CrossRefGoogle Scholar
  32. Katagi, T. (2010). Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (Vol. 204, pp. pp. 1–pp. 132). New York: Springer. doi: 10.1007/978-1-4419-1440-8_1.Google Scholar
  33. Lian, Y.-J., Pang, G.-F., Shu, H.-R., Fan, C.-L., Liu, Y.-M., Feng, J., et al. (2010). Simultaneous determination of 346 multiresidue pesticides in grapes by PSA-MSPD and GC-MS-SIM. Journal of Agricultural and Food Chemistry, 58(17), 9428–9453. doi: 10.1021/jf1019592.CrossRefGoogle Scholar
  34. Liu, M., Cheng, S., Ou, D., Yang, Y., Liu, H., Hou, L., et al. (2008). Organochlorine pesticides in surface sediments and suspended particulate matters from the Yangtze estuary, China. Environmental Pollution, 156(1), 168–173. doi: 10.1016/j.envpol.2007.12.015.CrossRefGoogle Scholar
  35. Luo, X., Mai, B., Yang, Q., Fu, J., Sheng, G., & Wang, Z. (2004). Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Marine Pollution Bulletin, 48(11–12), 1102–1115. doi: 10.1016/j.marpolbul.2003.12.018.CrossRefGoogle Scholar
  36. McMillin, D. J., & Means, J. C. (1996). Spatial and temporal trends of pesticide residues in water and particulates in the Mississippi River plume and the northwestern Gulf of Mexico. Journal of Chromatography A, 754(1–2), 169–185. doi: 10.1016/S0021-9673(96)00325-1.CrossRefGoogle Scholar
  37. Mearns, A. J., Reish, D. J., Oshida, P. S., Ginn, T., Rempel-Hester, M. A., & Arthur, C. (2012). Effects of pollution on marine organisms. Water Environment Research, 84(10), 1737–1823. doi: 10.2175/106143012X13407275695751.CrossRefGoogle Scholar
  38. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas (2007). Citrinos. In Gabinete de Planeamento e Políticas (Ed.), (pp. 32). Acessed 18 August 2015. (in Portuguese).Google Scholar
  39. Ministério do Ambiente (1998). Decreto-Lei n° 236/98 de 1 de Agosto. (Vol. 176, pp. 47): Diário da República. (in Portuguese).Google Scholar
  40. Ministério do Ambiente (2004). PROT Algarve. In Agricultura e Desenvolvimento Rural (Ed.), (Vol. III): Comissão de Coordenação e Desenvolvimento Regional do Algarve. (in Portuguese).Google Scholar
  41. Postigo, C., López dealda, M. J., Barceló, D., Ginebreda, A., Garrido, T., & Fraile, J. (2010). Analysis and occurrence of selected medium to highly polar pesticides in groundwater of Catalonia (NE Spain): an approach based on on-line solid phase extraction–liquid chromatography–electrospray-tandem mass spectrometry detection. Journal of Hydrology, 383(1–2), 83–92. doi: 10.1016/j.jhydrol.2009.07.036.CrossRefGoogle Scholar
  42. Ramsar (2014). Ramsar—wetlands for our future. http://www.ramsar.org/wetland/portugal. Acessed 18 August 2015.Google Scholar
  43. Ribeiro, J., Bentes, L., Coelho, R., Gonçalves, J. M. S., Lino, P. G., Monteiro, P., et al. (2006). Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science, 67(3), 461–474. doi: 10.1016/j.ecss.2005.11.036.CrossRefGoogle Scholar
  44. Ritter, L., Solomon, K. R., Forget, J., Stemeroff, M., & O'Leary, C. (1995). A review of selected persistent organic pollutants-DDT-Aldrin-Dieldrin-Endrin-Chlordane-Heptachlor-Hexachlorbenzene-Mirex-Toxaphene-Polychlorinated biphenyls-Dioxins and Furans. (Vol. PCS/95.39, pp. 149). Canada: The International Programme on Chemical Safety (IPCS).Google Scholar
  45. Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2014). Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of the Total Environment, 479–480(0), 247–257. doi: 10.1016/j.scitotenv.2014.01.121.CrossRefGoogle Scholar
  46. Rocha, M. J., Ribeiro, M. F. T., Cruzeiro, C., Figueiredo, F., & Rocha, E. (2011). Development and validation of a GC-MS method for determination of 39 common pesticides in estuarine water—targeting hazardous amounts in the Douro River estuary. International Journal of Environmental Analytical Chemistry, 92(14), 1587–1608. doi: 10.1080/03067319.2011.581366.CrossRefGoogle Scholar
  47. Schulz, R., Peall, S. K. C., Dabrowski, J. M., & Reinecke, A. J. (2001). Current-use insecticides, phosphates and suspended solids in the Lourens River, Western Cape, during the first rainfall event of the wet season. Water SA, 27(1), 65–70.Google Scholar
  48. St.George, T., Vlahos, P., Harner, T., Helm, P., & Wilford, B. (2011). A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing. Environmental Pollution, 159(2), 481–486. doi: 10.1016/j.envpol.2010.10.030.CrossRefGoogle Scholar
  49. Tang, Z., Yang, Z., Shen, Z., Niu, J., & Cai, Y. (2008). Residues of organochlorine pesticides in water and suspended particulate matter from the Yangtze River catchment of Wuhan, China. Environmental Monitoring and Assessment, 137(1–3), 427–439. doi: 10.1007/s10661-007-9778-z.CrossRefGoogle Scholar
  50. Thompson, M., Ellison, S. L., & Wood, R. (2002). Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 835–855. doi: 10.1351/pac200274050835.CrossRefGoogle Scholar
  51. Vallack, H. W., Bakker, D. J., Brandt, I., Broström-Lundén, E., Brouwer, A., Bull, K. R., et al. (1998). Controlling persistent organic pollutants–what next? Environmental Toxicology and Pharmacology, 6(3), 143–175. doi: 10.1016/s1382-6689(98)00036-2.CrossRefGoogle Scholar
  52. Varca, L. M. (2012). Pesticide residues in surface waters of Pagsanjan-Lumban catchment of Laguna de Bay, Philippines. Agricultural Water Management, 106, 35–41. doi: 10.1016/j.agwat.2011.08.006.CrossRefGoogle Scholar
  53. Vasconcelos, P., Gaspar, M. B., & Barroso, C. M. (2010). Imposex in Bolinus brandaris from the Ria formosa lagoon (southern Portugal): usefulness of "single-site baselines" for environmental monitoring. Journal of Environmental Monitoring, 12(10), 1823–1832. doi: 10.1039/C0EM00261E.CrossRefGoogle Scholar
  54. Vaz, E., De Noronha, T., & Nijkamp, P. (2013). Exploratory landscape metrics for agricultural sustainability. Agroecology and Sustainable Food Systems, 38(1), 92–108. doi: 10.1080/21683565.2013.825829.CrossRefGoogle Scholar
  55. Wang, J., Bi, Y., Pfister, G., Henkelmann, B., Zhu, K., & Schramm, K.-W. (2009). Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere, 75(8), 1119–1127. doi: 10.1016/j.chemosphere.2009.01.016.CrossRefGoogle Scholar
  56. Wong, J. W., Zhang, K., Tech, K., Hayward, D. G., Makovi, C. M., Krynitsky, A. J., et al. (2010). Multiresidue pesticide analysis in fresh produce by capillary gas chromatography–mass spectrometry/selective ion monitoring (GC-MS/SIM) and − tandem mass spectrometry (GC-MS/MS). Journal of Agricultural and Food Chemistry, 58(10), 5868–5883. doi: 10.1021/jf903854n.CrossRefGoogle Scholar
  57. Yang, X., Zhang, H., Liu, Y., Wang, J., Zhang, Y. C., Dong, A. J., et al. (2011). Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: determination of 88 pesticides in berries using SPE and GC–MS. Food Chemistry, 127(2), 855–865. doi: 10.1016/j.foodchem.2011.01.024.CrossRefGoogle Scholar
  58. Yang, D., Qi, S., Zhang, J., Wu, C., & Xing, X. (2013). Organochlorine pesticides in soil, water and sediment along the Jinjiang River mainstream to Quanzhou Bay, southeast China. Ecotoxicology and Environmental Safety, 89, 59–65. doi: 10.1016/j.ecoenv.2012.11.014.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Catarina Cruzeiro
    • 1
    • 2
  • Miguel Ângelo Pardal
    • 3
  • Eduardo Rocha
    • 1
    • 2
  • Maria João Rocha
    • 1
    • 2
  1. 1.CIIMAR—Interdisciplinary Centre for Marine and Environmental Research, Group of Physiopathology, Applied Toxicology and HistomorphologyPortoPortugal
  2. 2.Department of MicroscopyICBAS—Institute of Biomedical Sciences Abel SalazarPortoPortugal
  3. 3.Department of Life SciencesCFE—Centre for Functional EcologyCoimbraPortugal

Personalised recommendations