Advertisement

Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China

  • Chutian Zhang
  • Yong Yang
  • Weidong Li
  • Chuanrong Zhang
  • Ruoxi Zhang
  • Yang Mei
  • Xiangsen Liao
  • Yingying Liu
Article

Abstract

Surface soil samples from 467 sample sites were collected in urban area of Wuhan City in 2013, and total concentrations of five trace metals (Pb, Zn, Cu, Cr, and Cd) were measured. Multivariate and geostatistical analyses showed that concentrations of Pb, Zn, and Cu are higher along Yangtze River in the northern area of Wuhan, gradually decrease from city center to suburbs, and are mainly controlled by anthropogenic activities, while those of Cr and Cd are relatively spatially homogenous and mainly controlled by soil parent materials. Pb, Zn, Cu, and Cd have generally higher concentrations in roadsides, industrial areas, and residential areas than in school areas, greenbelts, and agricultural areas. Areas with higher road and population densities and longer urban construction history usually have higher trace metal concentrations. According to estimated results of the potential ecological risk index and Nemero synthesis pollution index, almost the whole urban area of Wuhan is facing considerable potential ecological risk caused by soil trace metals. These results reveal obvious trends of trace metal pollution, and an important impact of anthropogenic activities on the accumulation of trace metals in soil in Wuhan. Vehicular emission, industrial activities, and household wastes may be the three main sources for trace metal accumulation. Increasing vegetation cover may reduce this threat. It should be pointed out that Cd, which is strongly accumulated in soil, could be the largest soil pollution factor in Wuhan. Effective measures should be taken as soon as possible to deal with Cd enrichment, and other trace metals in soil should also be reduced, so as to protect human health in this important large city.

Keywords

Spatial distribution Risk assessment Trace metal Contamination Urban soil Wuhan 

Notes

Acknowledgments

The research was supported by National Natural Science Foundation of China (Grant No. 41101193), and the Fundamental Research Funds for National Universities (Grant No. 2662014PY062). Opinions in the paper do not constitute an endorsement or approval by the funding agencies and only reflect the personal views of the authors.

References

  1. Anikwe, M. A. N., & Nwobodo, K. C. A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresource Technology, 83(3), 241–250. doi: 10.1016/s0960-8524(01)00154-7.CrossRefGoogle Scholar
  2. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., et al. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1–4), 83–89. doi: 10.1007/s10661-008-0659-x.CrossRefGoogle Scholar
  3. Benhaddya, M., & Hadjel, M. (2014). Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environmental Earth Sciences, 71(3), 1473–1486. doi: 10.1007/s12665-013-2552-3.CrossRefGoogle Scholar
  4. Birke, M., & Rauch, U. (2000). Urban Geochemistry: Investigations in the Berlin Metropolitan Area. Environmental Geochemistry and Health, 22(3), 233–248. doi: 10.1023/a:1026554308673.CrossRefGoogle Scholar
  5. Bright, E. A., Rose, A. N., & Urban, M. L. (2013). LandScan 2013 Global Population Database. East View Information Services. O. R. N. Laboratory.Google Scholar
  6. Cai, Q. Y., Mo, C. H., Li, H. Q., Lü, H. X., Zeng, Q. Y., Li, Y. W., et al. (2013). Heavy metal contamination of urban soils and dusts in Guangzhou, South China. Environmental Monitoring and Assessment, 185(2), 1095–1106. doi: 10.1007/s10661-012-2617-x.CrossRefGoogle Scholar
  7. Chen, X. D., Lu, X. W., Li, L. Y., & Yang, G. (2013). Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi'an second ringroad, NW China. Environmental Earth Sciences, 68(7), 1979–1988. doi: 10.1007/s12665-012-1885-7.CrossRefGoogle Scholar
  8. China National Environmental Monitoring Centre. (1990). The background values of soil elements in China. Beijing: China Environmental Science Press.Google Scholar
  9. Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., et al. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32(1), 59–72.CrossRefGoogle Scholar
  10. Guo, G. H., Wu, F. C., Xie, F. Z., & Zhang, R. Q. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 24(3), 410–418. doi: 10.1016/S1001-0742(11)60762-6.CrossRefGoogle Scholar
  11. Gupta, S., Satpati, S., Nayek, S., & Garai, D. (2010). Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental Monitoring and Assessment, 165(1–4), 169–177. doi: 10.1007/s10661-009-0936-3.CrossRefGoogle Scholar
  12. Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975. doi: 10.1016/0043-1354(80)90143-8.CrossRefGoogle Scholar
  13. Helmreich, B., Hilliges, R., Schriewer, A., & Horn, H. (2010). Runoff pollutants of a highly trafficked urban road - correlation analysis and seasonal influences. Chemosphere, 80(9), 991–997. doi: 10.1016/j.chemosphere.2010.05.037.CrossRefGoogle Scholar
  14. Jiang, J. H., Xu, Y. H., & Peng, H. (2014). Distribution and speciation of heavy metals in sediments from Donghu Lake, Wuhan, China. Fresenius Environmental Bulletin, 23(2A), 502–507.Google Scholar
  15. Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43(31), 4681–4688. doi: 10.1016/j.atmosenv.2008.10.024.CrossRefGoogle Scholar
  16. Lin, Y. P., Teng, T. P., & Chang, T. K. (2002). Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62(1), 19–35. doi: 10.1016/S0169-2046(02)00094-4.CrossRefGoogle Scholar
  17. Liu, H. L., Li, L. Q., Yin, C. Q., & Shan, B. Q. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20(04), 390–397.CrossRefGoogle Scholar
  18. Liu, C. L., Yu, R. L., & Duan, D. Z. (2014). Spatial-temporal structure of capacity fractal about urban–rural road network in Wuhan Metropolitan Area (in Chinese). Geographical Research, 33(4), 777–788.Google Scholar
  19. Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28(4), 353–364. doi: 10.1007/s10653-005-9031-z.CrossRefGoogle Scholar
  20. Ma, Z. D., Zhang, D. C., Bi, X. Y., Liu, G. Q., Ren, L. M., & Quan, H. L. (2005). Origin of cadmium high-value zones along the Yangtze River and Hanjiang River in Wuhan, Hubei, China (in Chinese). Geological Bulletin of China, 24(8), 740–743.Google Scholar
  21. Mahanta, M., & Bhattacharyya, K. (2011). Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 173(1–4), 221–240. doi: 10.1007/s10661-010-1383-x.CrossRefGoogle Scholar
  22. Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41(2), 276–288. doi: 10.1016/j.atmosenv.2006.08.034.CrossRefGoogle Scholar
  23. Odewande, A., & Abimbola, A. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health, 30(3), 243–254. doi: 10.1007/s10653-007-9112-2.CrossRefGoogle Scholar
  24. Peng, C., Ouyang, Z., Wang, M., Chen, W., Li, X., & Crittenden, J. C. (2013). Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environmental Pollution, 178, 426–432. doi: 10.1016/j.envpol.2013.03.058.CrossRefGoogle Scholar
  25. Qu, M. K., Li, W. D., Zhang, C. R., Wang, S. Q., Yang, Y., & He, L. Y. (2013). Source apportionment of heavy metals in soils using multivariate statistics and geostatistics. Pedosphere, 23(4), 437–444. doi: 10.1016/S1002-0160(13)60036-3.CrossRefGoogle Scholar
  26. Qu, M. K., Li, W. D., & Zhang, C. R. (2014). Spatial distribution and uncertainty assessment of potential ecological risks of heavy metals in soil using sequential gaussian simulation. Human and Ecological Risk Assessment, 20(3), 764–778. doi: 10.1080/10807039.2013.770352.CrossRefGoogle Scholar
  27. Rizo, O. D., Castillo, F. E., López, J. O. A., & Merlo, M. H. (2011). Assessment of heavy metal pollution in urban soils of Havana City, Cuba. Bulletin of Environmental Contamination and Toxicology, 87(6), 414–419. doi: 10.1007/s00128-011-0378-9.CrossRefGoogle Scholar
  28. Rose, N., Cowie, C., Gillett, R., & Marks, G. B. (2009). Weighted road density: A simple way of assigning traffic-related air pollution exposure. Atmospheric Environment, 43(32), 5009–5014. doi: 10.1016/j.atmosenv.2009.06.049.CrossRefGoogle Scholar
  29. Salonen, V.-P., & Korkka-Niemi, K. (2007). Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22(5), 906–918. doi: 10.1016/j.apgeochem.2007.02.003.CrossRefGoogle Scholar
  30. Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156(2), 251–260. doi: 10.1016/j.envpol.2008.02.027.CrossRefGoogle Scholar
  31. State Environmental Protection Administration of China (1995). Environmental quality standard for soils.Google Scholar
  32. Wei, B. G., Jiang, F. Q., Li, X. M., & Mu, S. Y. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93(2), 147–152. doi: 10.1016/j.microc.2009.06.001.CrossRefGoogle Scholar
  33. Wu, C. M., Tsai, H. T., Yang, K. H., & Wen, J. C. (2012). How reliable is X-ray fluorescence (XRF) measurement for different metals in soil contamination? Environmental Forensics, 13(2), 110–121. doi: 10.1080/15275922.2012.676603.CrossRefGoogle Scholar
  34. Wuhan bureau of statistics. (2012). 2012 Wuhan statistical yearbook. Beijing: China Statistics Press.Google Scholar
  35. Wuhan bureau of statistics (2013). The Wuhan Statistical Bulletin of National Economic and Social Development. http://www.whtj.gov.cn/details.aspx?id=2180. Accessed 21 May 2014.
  36. Xia, X. H., Chen, X., Liu, R. M., & Liu, H. (2011). Heavy metals in urban soils with various types of land use in Beijing, China. Journal of Hazardous Materials, 186(2–3), 2043–2050. doi: 10.1016/j.jhazmat.2010.12.104.CrossRefGoogle Scholar
  37. Yang, Z. F., Wang, Y., Shen, Z. Y., Niu, J. F., & Tang, Z. W. (2009). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 166(2–3), 1186–1194. doi: 10.1016/j.jhazmat.2008.12.034.CrossRefGoogle Scholar
  38. Yang, X. F., Xiong, B. X., & Yang, M. S. (2010). Relationships among heavy metals and organic matter in sediment cores from Lake Nanhu, an Urban Lake in Wuhan, China. Journal of Freshwater Ecology, 25(2), 243–249. doi: 10.1080/02705060.2010.9665074.CrossRefGoogle Scholar
  39. Yang, T., Zeng, Q. L., Liu, Z. F., & Liu, Q. S. (2011). Magnetic properties of the road dusts from two parks in Wuhan city, China: implications for mapping urban environment. Environmental Monitoring and Assessment, 177(1–4), 637–648. doi: 10.1007/s10661-010-1662-6.CrossRefGoogle Scholar
  40. Yang, J., Meng, X. Z., Duan, Y. P., Liu, L. Z., Chen, L., & Cheng, H. F. (2014). Spatial distributions and sources of heavy metals in sediment from public park in Shanghai, the Yangtze River Delta. Applied Geochemistry, 44, 54–60. doi: 10.1016/j.apgeochem.2013.08.007.CrossRefGoogle Scholar
  41. Zhao, J. H., Li, H. Y., Gong, X., Du, W. M., & Hu, R. F. (2011). Study of soil organic carbon content in some typical functional areas, Wuhan City (in Chinese). Journal of Anhui Agricultural Sciences, 39(6), 3409–3410,3415.Google Scholar
  42. Zheng, N., Wang, Q. C., Zhang, X. W., Zheng, D. M., Zhang, Z. S., & Zhang, S. Q. (2007). Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Science of the Total Environment, 387(1–3), 96–104. doi: 10.1016/j.scitotenv.2007.07.044.CrossRefGoogle Scholar
  43. Zibret, G. (2012). Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia). Ambio, 41(3), 292–301. doi: 10.1007/s13280-011-0188-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chutian Zhang
    • 1
  • Yong Yang
    • 1
  • Weidong Li
    • 2
  • Chuanrong Zhang
    • 2
  • Ruoxi Zhang
    • 1
  • Yang Mei
    • 1
  • Xiangsen Liao
    • 1
  • Yingying Liu
    • 1
  1. 1.Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and EnvironmentHuazhong Agricultural UniversityWuhanChina
  2. 2.Department of Geography and Center for Environmental Sciences and EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations