Effects of metals on earthworm life cycles: a review

Article

Abstract

Earthworms are abundant and ecologically very important organisms in the soil ecosystem. Impacts by pollutants on earthworm communities greatly influence the fertility of the terrestrial environment. In ecotoxicology, earthworms are good indicators of metal pollution. The observed median lethal concentrations (LC50) and the effective concentrations that cause 50 % reduction of earthworm growth and reproduction (EC50) are referred to as toxicity concentrations or endpoints. In addition, the ‘no observed effective concentration’ (NOEC) is the estimation of the toxicity of metals on earthworms expressed as the highest concentration tested that does not show effects on growth and reproduction compared to controls. This article reviews the ecotoxicological parameters of LC50, EC50 and NOEC of a set of worms exposed to a number of metals in various tested media. In addition, this article reviews metal accumulation and the influences of soil characteristics on metal accumulation in earthworms. Morphological and behavioural responses are often used in earthworm toxicity studies. Therefore, earthworm responses due to metal toxicity are also discussed in this article.

Keywords

Earthworm Metals Toxicity LC50 NOEC EC50 

Notes

Acknowledgments

The author greatly acknowledge to Pusan National University for providing necessary facilities to prepare this manuscript.

References

  1. Abbasi, S. A., & Soni, R. (1983). Stress-induced enhancement of reproduction in earthworm Octochaetus pattoni exposed to chromium(VI) and mercury(II)—implications in environmental management. International Journal of Environmental Studies, 22, 43–47.CrossRefGoogle Scholar
  2. Alloway, B. J. (1990). Heavy metals in soils. Glasgow: Blackie and Son-Ltd.Google Scholar
  3. Bengtsson, G., & Tranvik, L. (1989). Critical metal concentrations for forest soil invertebrates. Water, Air, & Soil Pollution, 47, 381–417.CrossRefGoogle Scholar
  4. Bengtsson, G., Gunnarsson, T., & Rundgren, S. (1986). Effects of metal pollution on the earthworm Dendrobaena rubida (Sav) in acidified soils. Water, Air, & Soil Pollution, 28, 361–383.Google Scholar
  5. Beyer, W. N., & Cromartie, E. J. (1987). A survey of Pb, Cu, Zn, Cd, As and Se earthworms and soil from diverse sites. Environmental Monitoring and Assessment, 8, 27–36.CrossRefGoogle Scholar
  6. Beyer, W. N., Chaney, R. L., & Mulhern, B. M. (1982). Heavy metal concentrations in earthworms from soil amended with sewage sludge. Journal of Environmental Quality, 11, 381–385.CrossRefGoogle Scholar
  7. Beyer, W. N., Cromartie, E. J., & Moment, G. B. (1985). Accumulation of methylmercury in the earthworm, Eisenia fetida, and its effect on regeneration. Bulletin of Environmental Contamination and Toxicology, 35, 157–162.CrossRefGoogle Scholar
  8. Beyer, W. N., Hensler, G., & Moore, J. (1987). Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd and Se in earthworms. Pedobiologia, 30, 167–172.Google Scholar
  9. Bolt, G. H., & Bruggenwert, M. G. M. (1976). Soil chemistry, a basic elements development in soil science, Volume 5A. Amsterdam: Elseviers.Google Scholar
  10. Booth, L. H., Heppelthwaite, V. J., & O'Halloran, K. O. (2005). Effects based assay in the earthworm Aporrectodea caliginosa. Journal of Soils and Sediments, 5, 87–94.CrossRefGoogle Scholar
  11. Borgmann, U., Cove, R., & Lovoridge, C. (1980). Effects of metals on the biomass production kinetics of freshwater copepods. Canadian Journal of Fisheries and Aquatic Sciences, 37, 567–575.CrossRefGoogle Scholar
  12. Bouche, M. B. (1992). Earthworm species and ecotoxicology of earthworms. In P. W. Greig-smith, H. Becker, P. J. Edwards, & F. Heimbach (Eds.), Ecotoxicology of earthworms (p. 470). Andover: Intercept.Google Scholar
  13. Buikema, A. L., Jr., Niederlehner, B. R., & Cairns, J., Jr. (1980). Toxicant effects reproduction and disruption of the egg-length relationship in grass shrimp. Bulletin of Environmental Contamination and Toxicology, 24, 31–36.CrossRefGoogle Scholar
  14. Cikutovic, M. A., Fitzpatrick, L. C., Venables, B. J., & Goven, A. J. (1993). Sperm count in earthworms (Lumbricus terrestries) as a biomarker for environmental toxicology: effects of cadmium and chlordane. Environmental Pollution, 81, 123–125.CrossRefGoogle Scholar
  15. Currie, M., Hodson, M. E., Arnold, R. E., & Langdon, C. J. (2005). Single versus multiple occupancy-effects on toxicity parameters measured on Eisenia fetida in lead nitrate-treated soil. Environmental Toxicology and Chemistry, 24, 110–116.CrossRefGoogle Scholar
  16. Depta, B., Koscielniak, A., & Rozen, A. (1999). Food selection as a mechanism of heavy metal resistance in earthworms. Pedobiologia, 43, 608–614.Google Scholar
  17. Duffus, J. H. (2002). “Heavy Metals”—a meaningless term? IUPAC Technical Report. International Union of Pure and Applied Chemistry, 74, 793–807.CrossRefGoogle Scholar
  18. Eary, L. E., & Rai, D. (1987). Kinetics of Cr(III) oxidation by manganese dioxide. Environmental Science and Technology, 21, 1187–1193.CrossRefGoogle Scholar
  19. EEC, European Economic Community. (1985). Directive 79/831, Annex V, Part C, Methods for the determination of ecotoxicity, Level 1, DG X1/127-129/82, Rev 1. Brussels: Toxicity for Earthworms Commission of the European Community.Google Scholar
  20. Eriksen-Hamel, N. S., & Whalen, J. K. (2007). Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agriculture, Ecosystems and Environment, 120, 442–448.CrossRefGoogle Scholar
  21. Fitzpatrick, L. C., Muratti-Ortiz, J. F., Venables, B. J., & Goven, A. J. (1996). Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols. Bulletin of Environmental Contamination and Toxicology, 57, 63–68.CrossRefGoogle Scholar
  22. Gerhardt, A. (2007). Importance of exposure route for behavioural responses in Lumbriculus variegatus Muller (Oligochaeta: Lumbriculida) in short-term exposures to Pb. Environmental Science and Pollution Research, 14, 430–434.CrossRefGoogle Scholar
  23. Gopal, V., Clement, T., & Nagarajan, K. (1986). Potential of Megascolex-Pumilio in biomonitoring environmental pollution. Indian Journal of Environmental Health, 28, 194–199.Google Scholar
  24. Greville, R. W., & Morgan, A. J. (1989). Concentrations of metals (Cu, Pb, Cd, Zn, and Ca) in situ species of British terrestrial gastropods living near a disused Pb/Zn mine. Journal of Molluscan Studies, 56, 355–362.CrossRefGoogle Scholar
  25. Gupta, S. K., & Sundararaman, V. (1990). Biological response of earthworm Pheretima posthuma to inorganic cadmium. Indian Journal of Experimental Biology, 28, 71–73.Google Scholar
  26. Gupta, S. K., Srivastava, R., Kuittinen, M., Mathur, N., & Saxena, P. N. (2006). The comparative effects of metals on the hatching of earthworm cocoons. Alternatives to Laboratory Animals, 34, 491–498.Google Scholar
  27. Hartenstein, R., Neuhauser, E. F., & Collier, J. (1980). Accumulation of heavy metals in the earthworm Eisenia fetida. Journal of Environmental Quality, 9, 23–26.CrossRefGoogle Scholar
  28. Hobbelen, P. H. F., Koolhaas, J. E., & van Gestel, C. A. M. (2006). Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Environmental Pollution, 144, 639–646.CrossRefGoogle Scholar
  29. Honda, K., Nasu, T., & Tatsukawa, R. (1984). Metal distribution in the earthworm, Pheretima hilgenorfi, and their variations with growth. Archives of Environmental Contamination and Toxicology, 13, 427–432.CrossRefGoogle Scholar
  30. Hong, H. N., Rumpel, C., des Tureaux, T. H., Bardoux, G., Billou, D., Duc, T. T., & Jouquet, P. (2011). How do earthworms influence organic matter quantity and quality in tropical soils? Soil Biology and Biochemistry, 43, 223–230.CrossRefGoogle Scholar
  31. Hopkin, S. P., Martin, M. H., & Moss, S. J. (1985). Heavy metals in isopods from the sub-littoral zone on the southern shore of the Seven Estuary. UK. Environmental Pollution (Series B), 9, 239–254.CrossRefGoogle Scholar
  32. Hund-Rinke, K., & Wiechering, H. (2001). Earthworm avoidance test for soil assessment. Journal of Soils and Sediments, 1, 15–20.CrossRefGoogle Scholar
  33. Ireland, M. P. (1975). Distribution of lead, zinc and calcium in Dendrobaena rubida (Oligochaeta) living in soil contaminated by base metal mining in wales. Comparative Biochemistry and Physiology, 52, 551–555.CrossRefGoogle Scholar
  34. Ireland, M. P. (1983). Heavy metal uptake and tissue distribution in earthworms. In J. E. Satchell (Ed.), Earthworm ecology (pp. 247–265). Cambridge: Chapman and Hall, University Press.CrossRefGoogle Scholar
  35. Kalaiselvan, K., Prince, S. P. M. W., & Subburam, V. (1996). Toxicity of lead to the earthworm Drawida ramnadana (Michaelsen). Pollution Research, 15, 15–18.Google Scholar
  36. Kasthuri, H., Shanthi, K., Sivakumar, S., Rajakumar, S., Son, H. K., & Song, Y. C. (2011). Influence of municipal solid waste compost (MSWC) on the growth and yield of green gram (Vigna radiate (L) Wilczek), Fenugreek (Trigonella foenum-graecum L.) and on soil quality. Iranian Journal of Environmental Science and Engineering, 8, 285–294.Google Scholar
  37. Kennette, D., Hendershot, W., Tomlin, A., & Sauve, S. (2002). Uptake of trace metals by the earthworm Lumbricus terrestris L. in urban contaminated soils. Applied Soil Ecology, 19, 191–198.CrossRefGoogle Scholar
  38. Khalil, M. A., Abdel-Lateif, H. M., Bayoumi, B. M., & Van Straalen, N. M. (1996a). Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annalida), using the toxic unit approach. Applied Soil Ecology, 4, 213–219.CrossRefGoogle Scholar
  39. Khalil, M. A., Abdel-Lateif, H. M., Bayoumi, B. M., Van Straalen, N. M., & Van Gestel, C. A. M. (1996b). Effect of metals and metal mixtures on survival and cocoon production of the earthworm Aporrectodea caliginos. Pedobiologia, 40, 548–556.Google Scholar
  40. Kumar, S., Sharma, V., Bhoyar, R. V., Bhattacharyya, J. K., & Chakrabarti, T. (2008). Effect of heavy metals on earthworm activities during vermicomposting of municipal solid waste. Water Environment Research, 80, 154–161.Google Scholar
  41. Langdon, C. J., Piearce, T. G., Black, S., & Semple, K. T. (1999). Resistance to arsenic toxicity in a population of the earthworm Lumbricus rubellus. Soil Biology and Biochemistry, 31, 1963–1967.CrossRefGoogle Scholar
  42. Langdon, C. J., Piearce, T. G., Meharg, A. A., & Semple, K. T. (2001). Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrillus rubidus form contaminated mine wastes. Environmental Toxicology and Chemistry, 20, 2336–2341.CrossRefGoogle Scholar
  43. Langdon, C. J., Hodson, M. E., Arnold, R. E., & Black, S. (2005). Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Environmental Pollution, 138, 368–375.CrossRefGoogle Scholar
  44. Langdon, C. J., Morgan, A. J., Charnock, J. M., Semple, K. T., & Lowe, C. N. (2009). As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine site. Environmental Pollution, 157, 3114–3119.CrossRefGoogle Scholar
  45. Lee, B. T., & Kim, K. W. (2009). Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils. Environmental Toxicology, 24, 369–376.CrossRefGoogle Scholar
  46. Lock, K., & Janssen, C. R. (2001). Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account. Ecotoxicology, 10, 315–322.CrossRefGoogle Scholar
  47. Lock, K., & Janssen, C. R. (2002a). Toxicity of arsenate to the compost worm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida. Bulletin of Environmental Contamination and Toxicology, 68, 760–765.CrossRefGoogle Scholar
  48. Lock, K., & Janssen, C. R. (2002b). Ecotoxicity of nickel to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Chemosphere, 46, 197–200.CrossRefGoogle Scholar
  49. Lock, K., & Janssen, C. R. (2002c). Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Biology and Fertility of Soils, 46, 197–200.Google Scholar
  50. Lock, K., & Janssen, C. R. (2002d). Ecotoxicity of chromium (III) to Eisenia fetida, Enchytraeus albidus, and Folsomia candida. Ecotoxicology and Environmental Safety, 51, 203–205.CrossRefGoogle Scholar
  51. Lock, K., De Schamphelaere, K., & Janssen, C. (2002). The effect of lindane on terrestrial invertebrates. Archives of Environmental Contamination and Toxicology, 42, 217–221.CrossRefGoogle Scholar
  52. Loureiro, S., Soares, A. M. V. M., & Nogueria, A. J. A. (2005). Terrestrial avoidance behaviour tests as screening tool to access soil contamination. Environmental Pollution, 138, 121–131.CrossRefGoogle Scholar
  53. Loureiro, S., Amorim, M. J. B. B., Rodrigues, C. S. M. G., & Soares, A. M. V. M. (2009). Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint. Environmental Pollution, 157, 625–636.CrossRefGoogle Scholar
  54. Lukkari, T., & Haimi, J. (2005). Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicology and Environmental Safety, 62, 35–41.CrossRefGoogle Scholar
  55. Ma, W. C. (1982). The influence of soil properties and worm related factors on the concentration of heavy metals in earthworms. Pedobiologia, 24, 109–119.Google Scholar
  56. Ma, W. C. (1983). Regenwormen als bio-indicators van bodemverontreiniging, Bodembescherming 15. The Hague: Staatsuitgeverij.Google Scholar
  57. Ma, W. C. (1984). Sublethal effects of copper on growth, reproduction and litter breakdown activity in the earthworm Lumbricus rubellus with observations on the influence of temperature and soil pH. Environmental Pollution, 33, 207–219.CrossRefGoogle Scholar
  58. Ma, W. C. (1988). Toxicity of copper to lumbricid earthworms in sandy agricultural soils amended with Cu-enriched organic waste materials. Ecological Bulletins, 39, 53–56.Google Scholar
  59. Ma, W. C., Edleman, T., van Beersum, I., & Jane, T. (1983). Uptake of cadmium, zinc, lead and copper by earthworms near a zinc smelting complex: influence of soil pH and organic matter. Bullecological. Bulletin of Environmental Contamination and Toxicology, 30, 424–427.CrossRefGoogle Scholar
  60. Maity, S., Padhy, P. K., & Chaudhury, S. (2008). The role of earthworm Lampito mauritii (Kinberg) in amending lead and zinc treated soil. Bioresource Technology, 99, 7291–7298.CrossRefGoogle Scholar
  61. Meharg, A. A., Shore, R. F., & Broadgate, K. (1998). Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus terrestris. Environmental Toxicology and Chemistry, 17, 1124–1131.CrossRefGoogle Scholar
  62. Meulen, G. R. B. T., Stigliani, W. M., Salomons, W., Bridges, E. M., & Imeson, A. C. (1993). Chemical time bombs. Proceedings of the European state-of-the-art conference on delayed effects of chemicals in soils and sediments, Foundation for eco-development. Hoofddrop: Stichting Mondiaal Alternatief.Google Scholar
  63. Morgan, J. E., & Morgan, A. J. (1988a). Calcium-lead interactions involving earthworms, Part 1: the effect of exogenous calcium on lead accumulation by earthworms under field and laboratory conditions. Environmental Pollution, 54, 41–53.CrossRefGoogle Scholar
  64. Morgan, J. E., & Morgan, A. J. (1988b). Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environmental Pollution, 54, 123–138.CrossRefGoogle Scholar
  65. Morgan, J. E., & Morgan, A. J. (1990). The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm Lumbricus rubellus sampled from one contaminated and four polluted soils. Oecologia, 84, 559–566.CrossRefGoogle Scholar
  66. Morgan, J. E., & Morgan, A. J. (1991). Differences in the accumulated metal concentration in two epigeic earthworm species (Lumbricus rubellus and Dendrodrilus rubidus) living in contaminated soils. Bulletin of Environmental Contamination and Toxicology, 47, 296–301.CrossRefGoogle Scholar
  67. Morgan, J. E., & Morgan, A. J. (1993). Seasonal changes in the tissue metal (Cd, Zn and Pb) concentrations in two ecophysiologically dissimilar earthworm species: Pollution-monitoring implications. Environmental Pollution, 82, 1–7.CrossRefGoogle Scholar
  68. Nederlof, M., van Riemsdijk, W. H., & De Hann, F. A. M. (1993). Effect on pH on the bioavailability of metals in soils. In H. J. P. Eijsacker & T. Hamers (Eds.), Integrated soil and sediment research; a basis for proper protection (pp. 215–219). Dordrecht: Kluwer.CrossRefGoogle Scholar
  69. Neuhauser, E. F., Malecki, M. R., & Loehr, R. C. (1984). Growth and reproduction of the earthworm Eisenia fetida after exposure to sublethal concentrations of metals. Pedobiologia, 27, 89–97.Google Scholar
  70. Neuhauser, E. F., Loehr, R. C., Milligan, D. L., & Malecki, M. R. (1985). Toxicity of metals to the earthworm Eisenia fetida. Biology and Fertility of Soils, 1, 149–152.CrossRefGoogle Scholar
  71. Novais, S. C., Gomes, S. I., Gravato, C., Guilhermino, L., De Coen, W., Soares, A. M., & Amorim, M. J. (2011). Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution, 159, 1836–1843.CrossRefGoogle Scholar
  72. OECD, Organisation for Economic Cooperation and Development. (1984). Earthworm, acute toxicity tests. OECD-Guideline for testing chemicals, 207, Paris.Google Scholar
  73. Owojori, O. J., Reinecke, A. J., & Rozanov, A. B. (2008). Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 40, 2385–2393.CrossRefGoogle Scholar
  74. Owojori, O. J., Reinecke, A. J., & Rozanov, A. B. (2009). Role of clay content in partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 72, 99–107.CrossRefGoogle Scholar
  75. Owojori, O. J., Reinecke, A. J., & Rozanov, A. B. (2010). Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 73, 407–414.CrossRefGoogle Scholar
  76. Peijnenburg, W. J. G. M., Posthuma, L., Eijsackers, H. J. P., & Allen, H. E. (1997). A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicology and Environmental Safety, 37, 163–172.CrossRefGoogle Scholar
  77. Peijnenburg, W. J. G. M., Baerselman, R., De Groot, A. C., Jager, T., Posthuma, L., & Van Veen, R. P. M. (1999). Relating environmental availability to bioavailablity: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicology and Environmental Safety, 44, 294–310.CrossRefGoogle Scholar
  78. Posthuma, L., Boonman, J. C., Mogo, F. C., & Baerselman, R. (1994). Heavy metal toxicity in Eisenia andrei exposed in soils from a gradient around a zinc smelter (Budel) and comparison with toxic effects in OECD—artificial soil (RIVM – report 719102033). The Netherlands: Bilthoven.Google Scholar
  79. Reinecke, A. J., & Reinecke, S. A. (1996). The influence of heavy metals on the growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Pedobiologia, 40, 439–448.Google Scholar
  80. Reinecke, S. A., & Reinecke, A. J. (1997). The influence of lead and manganese on spermatozoa of Eisenia fetida (Oligochaeta). Soil Biology and Biochemistry, 29, 737–742.CrossRefGoogle Scholar
  81. Reinecke, A. J., Reinecke, S. A., & Lambrechts, H. (1997). Uptake and toxicity of copper and zinc for the African earthworm, Eudrilus eugeniae (Oligochaeta). Biology and Fertility of Soils, 24, 27–31.CrossRefGoogle Scholar
  82. Rongquan, Z., & Canyang, L. I. (2009). Effect of lead on survival, locomotion and sperm morphology of Asian earthworm, Pheretima guillelmi. Journal of Environmental Science, 21, 691–695.CrossRefGoogle Scholar
  83. Saxe, J. K., Impellitteri, C. A., Peijnenburg, W. J. G. M., & Allen, H. E. (2001). Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environmental Science and Technology, 35, 4522–4529.CrossRefGoogle Scholar
  84. Schaefer, M. (2003). Behavioural endpoints in earthworm ecotoxicology. Journal of Soils and Sediments, 3, 79–84.CrossRefGoogle Scholar
  85. Scott-Fordsmand, J. J., Weeks, J. M., & Hopkin, S. P. (1998). Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay. Ecotoxicology, 7, 291–295.CrossRefGoogle Scholar
  86. Sivakumar, S. (2003). Effects of chromium (III) and (VI) on the growth and reproduction of the earthworm E. fetida. Ph.D. thesis. Department of Environmental Sciences, Bharathiar University, Coimbatore, India.Google Scholar
  87. Sivakumar, S., & Subbhuraam, C. V. (2005). Toxicity of chromium(III) and chromium(VI) to the earthworm Eisenia fetida. Ecotoxicology and Environmental Chemistry, 62, 93–98.CrossRefGoogle Scholar
  88. Sivakumar, S., Kavitha, K., Rejeshwari, S., Prabha, D., & Subburam, V. (2003). Effect of cadmium and mercury on the survival morphology and burrowing behaviour of the earthworm Lambito Mauritii (Kinberg). Indian Journal of Environmental Protection, 23, 799–992.Google Scholar
  89. Sivakumar, S., Kasthuri, H., Prabha, D., Senthilkumar, P., Subbhuraam, C. V., & Song, Y. C. (2009a). Efficiency of composting parthenium plant and neem leaves in the presence and absence of an oligochaete, Eisenia fetida. Iranian Journal of Environmental Health Science and Engineering, 3, 201–208.Google Scholar
  90. Sivakumar, S., Song, Y. C., Prabha, D., & Subbhuraam, C. V. (2009b). Life cycle parameters of the earthworm Eisenia fetida exposed to Cr(III) and Cr(VI) amended organic substrates. In N. Karmegam, (Ed.), special issue Dynamic soils, dynamic plant (pp. 147-153). Global Science Books.Google Scholar
  91. Sivakumar, S., Nithyanandi, D., Barathi, S., Prabha, D., Rajeshwari, S., Son, H. K., & Subbhuraam, C. V. (2012). Selected enzyme activities of urban heavy metal-polluted soils in the presence and absence of an oligochaete, Lampito mauritii (Kinberg). Journal of Hazardous Materials, 227–228, 179–184.CrossRefGoogle Scholar
  92. Sivakumar, S., Prabha, D., Barathi, S., Nityanandi, D., Subbhuraam, C. V., Lakshmipriya, T., Kamala-Kannan, S., Jang, S. H., & Yi, P. I. (2015). The influence of the earthworm Lampito mauritii (Kingberg) on the activity of selected soil enzymes in cadmium-amended soil. Environmental Monitoring and Assessment, 187, 74–81.CrossRefGoogle Scholar
  93. Sizmur, T., Tilston, E. L., Charnock, J., Palumbo-roe, B., Watts, M. J., & Hodson, M. E. (2011). Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. Journal of Environmental Monitoring, 13, 266–273.CrossRefGoogle Scholar
  94. Soni, R., & Abbassi, S. A. (1981). Mortality and reproduction in earthworms Pheretima posthuma exposed to chromium (VI). International Journal of Environmental Studies, 17, 147–149.CrossRefGoogle Scholar
  95. Spurgeon, D. J., & Hopkin, S. P. (1995). Extrapolation of the laboratory - based OECD earthworm toxicity test to metal contaminated field sites. Ecotoxicology, 4, 190–205.CrossRefGoogle Scholar
  96. Spurgeon, D. J., & Hopkin, S. P. (1996a). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of Zn to the earthworm Eisenia fetida. Pedobiologia, 40, 80–96.Google Scholar
  97. Spurgeon, D. J., & Hopkin, S. P. (1996b). Effects of metal-contaminated soils on the growth, sexual development, and early cocoon production of the earthworm Eisenia fetida, with particular reference to zinc. Ecotoxicology and Environmental Safety, 35, 86–95.CrossRefGoogle Scholar
  98. Spurgeon, D. J., & Hopkin, S. P. (2000). The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida. Environmental Pollution, 109, 193–201.CrossRefGoogle Scholar
  99. Spurgeon, D. J., Hopkin, S. P., & Jones, D. T. (1994). Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savingny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environmental Pollution, 84, 123–130.CrossRefGoogle Scholar
  100. Spurgeon, D. J., Svendsen, C., Rimmer, V. R., Hopkin, S. P., & Weeks, J. M. (2000). Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry, 19, 1800–1808.CrossRefGoogle Scholar
  101. Spurgeon, D. J., Svendsen, C., Lister, L. J., Hankard, P. K., & Kille, P. (2005). Earthworm responses to Cd and Cu under fluctuating environmental conditions: a comparison with results from laboratory exposures. Environmental Pollution, 136, 443–452.CrossRefGoogle Scholar
  102. Subramaniam, S., Thangavel, P., & Subburam, V. (1991). Behavioural, morphological and toxic effects of Zn in the earthworm, Lambito mauritii (kinberg) in water and soil media. Indian Biologist, 24, 1–7.Google Scholar
  103. Suthar, S., Kumar, K., & Mutiyar, P. V. (2015). Nutrient recovery from compostable fractions of municipal solid wastes using vermitechnology. Journal of Material Cycles and Waste Management, 17, 174–184.CrossRefGoogle Scholar
  104. Tajbakhsh, J., Goltapeh, E., & Varma, A. (2011). Vermicompost as a biological soil amendment. In A. Karaca (Ed.), Biology of earthworms, soil biology (pp. 215). Springer-Verlag Berlin Beidelberg.Google Scholar
  105. Van Gestel, C. A. M. (1992). The influence of soil characteristics on the toxicity of chemicals for earthworms: a review. In P. W. Greig-Smith, H. Becker, P. J. Edwards, & F. Heimbach (Eds.), Ecotoxicology of earthworms (pp. 44–54). Andover: Intercept. Ltd.Google Scholar
  106. Van Gestel, C. A. M., & Van Dis, W. A. (1988). The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia fetida andrei (Oligochaeta). Biology and Fertility of Soils, 6, 262–265.CrossRefGoogle Scholar
  107. Van Gestel, C. A. M., & Weeks, J. M. (2004). Recommendations of the 3rd international workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001. Ecotoxicology and Environmental Safety, 57, 100–105.CrossRefGoogle Scholar
  108. Van Gestel, C. A. M., Van Dis, W. A., Diren-Van Breemen, E. M., & Sparenburg, P. M. (1989). Development of a standardize reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol and 2,4,-dichloroaniline. Ecotoxicology Environmental Safety, 18, 305–312.CrossRefGoogle Scholar
  109. Van Gestel, C. A. M., Van Dis, W. A., Dirven-Van Breemen, E. M., Sparenburg, P. M., & Baerselman, R. (1991). Influence of cadmium, copper and pentachlorophenol on growth and sexual development of Eisenia andrei (Oligochaeta, Annelida). Biology and Fertility of Soils, 12, 117–121.CrossRefGoogle Scholar
  110. Van Gestel, C. A. M., Dirven-Van Breemen, E. M., Baerselman, R., Emans, H. J. B., Janssen, J. A. M., Posthuma, R., & Van Vliet, P. J. M. (1992). Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei. Ecotoxicology and Environmental Safety, 23, 206–220.CrossRefGoogle Scholar
  111. Van Gestel, C. A. M., Dirven-Van Breemen, E. M., & Baerselman, R. (1993). Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta. Annelida). Science of the Total Environment, 1, 585–597.CrossRefGoogle Scholar
  112. Van Riemsdijk, W. H., & Hiemsra, T. (1993). Adsorption to heterogenous surfaces. In H. E. Allen, E. M. Perdue, & D. S. Brown (Eds.), Metals in groundwater (pp. 1–36). Chelsea: Lewis Publication.Google Scholar
  113. Veerabahu, S., Prince, S. P. M. W., & Subburam, V. (1995). Toxicity of cadmium to the earthworm Drawida ramnadana (Michaelsen). Journal of Environmental Pollution, 2, 55–58.Google Scholar
  114. Vijver, M. G., Vink, J. P. M., Miermans, C. J. H., & van Gestel, C. A. M. (2003). Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biology and Biochemistry, 35, 125–132.CrossRefGoogle Scholar
  115. Vijver, M. G., Wolterbeek, H. T., Vink, J. P. M., & van Gestel, C. A. M. (2005). Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Science of the Total Environment, 340, 271–280.CrossRefGoogle Scholar
  116. Wang, L., Zhang, Y., Lian, J., Chao, J., Gao, Y., Yang, F., & Zhang, L. (2013). Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresource Technology, 136, 281–287.CrossRefGoogle Scholar
  117. Wiltje, L., Posthuma, L., Mogo, F. C., Dirven-van Breeman, E. M., & Van Veen, R. P. M. (1995). Toxic effects of cadmium, zinc and copper mixtures on terrestrial oligochaetes in view of soil chemical interactions, In dutch with english abstract, RIVM – report 719102043. The Netherlands: Bilthoven.Google Scholar
  118. Yeardley, R. B., Lazorchak, J. M., & Gast, L. C. (1996). The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environmental Toxicology and Chemistry, 15, 1532–1537.Google Scholar
  119. Yong, R. N., Mohamed, A. M. O., & Warkentin, B. P. (1992). Principles of contaminant transport in soils. Developments in Geotechnical Engineering, 73. Amsterdam: Elsevier.Google Scholar
  120. Zaltauskaite, J., & Sodiene, I. (2010). Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida. Ekologija, 56, 10–16.CrossRefGoogle Scholar
  121. Zhang, J., Yu, J., Ouyang, Y., & Xu, H. (2013). Responses of earthworm to aluminum toxicity in latosol. Environmental Science and Pollution Research, 20, 1135–1141.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Bioenvironmental Energy, College of Natural Resource and Life SciencePusan National UniversityMiryang-siSouth Korea

Personalised recommendations