Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands—implications and suggestions for sampling designs

  • Terje Kristensen
  • Mikael Ohlson
  • Paul Bolstad
  • Zoltan Nagy


Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m−2. Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R 2 ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping.


Boreal forest Geostatistics Forest floor Kyoto protocol Podzols Spatial autocorrelation Norway spruce 



This paper is a contribution to the Norwegian centennial chair program, a collaboration between the University of Minnesota and the Norwegian University of Life Sciences (UMB). The study was cofounded by the Norwegian University of Life Sciences, Fulbright Foundation, and Torske Klubben Minneapolis. We would like to thank Fritzøe Skoger for allowing us to use their property for this investigation. Further, we would like thank Dr. Marit Lie (UMB), Dr. Anders Nilsen (UMB), Monica Slåttum (UMB), and Malin Pilstrøm (UMB) for their assistance in the collection of data. Finally, we would like express our gratitude to Dr. Randy Kolka (USDA Forest Service), Dr. Rebecca Montgomery (University of Minnesota), and two anonymous reviewers who provided thoughtful feedback which improved the manuscript.


  1. Ågren, G., Hyvönen, R., & Nilsson, T. (2007). Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry, 82(3), 217–227.CrossRefGoogle Scholar
  2. Atkinson, P. M., Webster, R., & Curran, P. J. (1992). Cokriging with ground-based radiometry. Remote Sensing of Environment, 41(1), 45–60.CrossRefGoogle Scholar
  3. Baritz, R., Seufert, G., Montanarella, L., & Van Ranst, E. (2010). Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management, 260(3), 262–277.CrossRefGoogle Scholar
  4. Bens, O., Buczko, U., Sieber, S., & Hüttl, R. F. (2006). Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. Journal of Plant Nutrition and Soil Science, 169(1), 5–15.CrossRefGoogle Scholar
  5. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69.CrossRefGoogle Scholar
  6. Binkley, D., & Fisher, R. (2012). Ecology and management of forest soils. New York: Wiley.Google Scholar
  7. Birdsey, R. (2004). Data gaps for monitoring forest carbon in the United States: an inventory perspective. Environmental Management, 33(1), S1–S8.CrossRefGoogle Scholar
  8. Block, R., Van Rees, K., & Pennock, D. (2002). Quantifying harvesting impacts using soil compaction and disturbance regimes at a landscape scale. Soil Science Society of America Journal, 66(5), 1669–1676.CrossRefGoogle Scholar
  9. Borcard, D., & Legendre, P. (2012). Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology, 93(6), 1473–1481.CrossRefGoogle Scholar
  10. Cajander, A.K. (1926). The theory of forest types. Printing Office of Society for the Finnish Literature.Google Scholar
  11. Cajander, A.K. (1949). Forest types and their significance. Suomen metsätieteellinen seura.Google Scholar
  12. Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand, L., Vesterdal, L., & Westman, C. J. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9(3), 358–370.CrossRefGoogle Scholar
  13. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Turco, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.CrossRefGoogle Scholar
  14. Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. London: Pion.Google Scholar
  15. Conant, R. T., Ogle, S. M., Paul, E. A., & Paustian, K. (2011). Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Frontiers in Ecology and the Environment, 9, 169–173.CrossRefGoogle Scholar
  16. Cressie, N. (1985). Fitting variogram models by weighted least squares. Mathematical Geology, 17(5), 563–586.CrossRefGoogle Scholar
  17. de Gruijter, J. J. (2006). Sampling for natural resource monitoring. Berlin: Springer.CrossRefGoogle Scholar
  18. Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., & Schulze, E.-D. (2007). Spatial and vertical variation of soil carbon at two grassland sites—implications for measuring soil carbon stocks. Geoderma, 141(3–4), 272–282.CrossRefGoogle Scholar
  19. Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252.CrossRefGoogle Scholar
  20. Finer, L., Mannerkoski, H., Piirainen, S., & Starr, M. (2003). Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174(1), 51–63.CrossRefGoogle Scholar
  21. Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal N’s and/or variances: a Monte Carlo study. Journal of Educational and Behavioral Statistics, 1(2), 113–125.CrossRefGoogle Scholar
  22. Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27(4), 315–334.CrossRefGoogle Scholar
  23. Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89(1–2), 1–45.CrossRefGoogle Scholar
  24. Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21.CrossRefGoogle Scholar
  25. Häkkinen, M., Heikkinen, J., & Mäkipää, R. (2011). Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeosciences Discussions, 8(1), 1015–1042.CrossRefGoogle Scholar
  26. Hansson, K., Olsson, B. A., Olsson, M., Johansson, U., & Kleja, D. B. (2011). Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management, 262(3), 522–530.CrossRefGoogle Scholar
  27. Hedde, M., Aubert, M., Decaëns, T., & Bureau, F. (2008). Dynamics of soil carbon in a beechwood chronosequence forest. Forest Ecology and Management, 255(1), 193–202.CrossRefGoogle Scholar
  28. Heim, A., Wehrli, L., Eugster, W., & Schmidt, M. W. I. (2009). Effects of sampling design on the probability to detect soil carbon stock changes at the Swiss CarboEurope site Lägeren. Geoderma, 149(3–4), 347–354.CrossRefGoogle Scholar
  29. Hilli, S., Stark, S., & Derome, J. (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2), 270–282.CrossRefGoogle Scholar
  30. Hilli, S., Stark, S., & Derome, J. (2010). Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Applied Soil Ecology, 46(2), 200–208.CrossRefGoogle Scholar
  31. Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Hogberg, M. N., Nyberg, G., Ottosson-Lofvenius, M., & Read, D. J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411(6839), 789–792.CrossRefGoogle Scholar
  32. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  33. Hunt, S. L., Gordon, A. M., & Morris, D. M. (2010). Carbon stocks in managed conifer forests in northern Ontario, Canada. Silva Fennica, 44(4), 563–582.CrossRefGoogle Scholar
  34. Huntington, T. G., Johnson, C. E., Johnson, A. H., Siccama, T. G., & Ryan, D. F. (1989). Carbon, organic matter, and bulk density relationships in a forested Spodosol. Soil Science, 148(5), 380–386.CrossRefGoogle Scholar
  35. Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D., Jr., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383.CrossRefGoogle Scholar
  36. Jungqvist, G., Oni, S. K., Teutschbein, C., & Futter, M. N. (2014). Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE, 9(4), e93957.CrossRefGoogle Scholar
  37. Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., & Berninger, F. (2004). Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology, 10(7), 1106–1119.CrossRefGoogle Scholar
  38. Kolka, R., Steber, A., Brooks, K., Perry, C. H., & Powers, M. (2012). Relationships between soil compaction and harvest season, soil texture, and landscape position for aspen forests. Northern Journal of Applied Forestry, 29(1), 21–25.CrossRefGoogle Scholar
  39. Koven, C. D. (2013). Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6(6), 452–456.CrossRefGoogle Scholar
  40. Kulmatiski, A., & Beard, K. H. (2004). Reducing sampler error in soil research. Soil Biology and Biochemistry, 36(2), 383–385.CrossRefGoogle Scholar
  41. Kunkel, M. L., Flores, A. N., Smith, T. J., McNamara, J. P., & Benner, S. G. (2011). A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165(1), 1–11.CrossRefGoogle Scholar
  42. Kurz, W. A., Stinson, G., & Rampley, G. (2008). Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1501), 2259–2268.CrossRefGoogle Scholar
  43. Lark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756.CrossRefGoogle Scholar
  44. Legendre, P., & Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80(2), 107–138.CrossRefGoogle Scholar
  45. Lie, M. H., Arup, U., Grytnes, J.-A., & Ohlson, M. (2009). The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodiversity and Conservation, 18(13), 3579–3596.CrossRefGoogle Scholar
  46. Lie, M. H., Josefsson, T., Storaunet, K. O., & Ohlson, M. (2012). A refined view on the “Green lie”: forest structure and composition succeeding early twentieth century selective logging in SE Norway. Scandinavian Journal of Forest Research, 27(3), 270–284.CrossRefGoogle Scholar
  47. Lindner, M., & Karjalainen, T. (2007). Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. European Journal of Forest Research, 126(2), 149–156.CrossRefGoogle Scholar
  48. Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand—effect of trees and implications for sampling. Silva Fennica, 29(4), 255–266.CrossRefGoogle Scholar
  49. Liski, J., & Westman, C. J. (1995). Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry, 29(3), 183–197.CrossRefGoogle Scholar
  50. Liski, J., Perruchoud, D., & Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169(1–2), 159–175.CrossRefGoogle Scholar
  51. Lundström, U. S., van Breemen, N., & Bain, D. (2000). The podzolization process. A review. Geoderma, 94(2–4), 91–107.CrossRefGoogle Scholar
  52. Mäkipää, R., Häkkinen, M., Muukkonen, P., & Peltoniemi, M. (2008). The costs of monitoring changes in forest soil carbon stocks. Boreal Environment Research, 13(Suppl. B), 120–130.Google Scholar
  53. Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22(6), 715–740.CrossRefGoogle Scholar
  54. Marchant, B. P., & Lark, R. M. (2006). Adaptive sampling and reconnaissance surveys for geostatistical mapping of the soil. European Journal of Soil Science, 57(6), 831–845.CrossRefGoogle Scholar
  55. Marty, C., Houle, D., & Gagnon, C. (2015). Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. Forest Ecology and Management, 345, 29–38.CrossRefGoogle Scholar
  56. McBratney, A. B., & Webster, R. (1983). Optimal interpolation and isarithmic mapping of soil properties. Journal of Soil Science, 34(1), 137–162.CrossRefGoogle Scholar
  57. McBratney, A. B., Webster, R., & Burgess, T. M. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables—I. Theory and method. Computers & Geosciences, 7(4), 331–334.CrossRefGoogle Scholar
  58. Mueller, T., & Pierce, F. (2003). Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Science Society of America Journal, 67(1), 258–267.CrossRefGoogle Scholar
  59. Mueller, K., Eissenstat, D., Hobbie, S., Oleksyn, J., Jagodzinski, A., Reich, P., Chadwick, O., & Chorover, J. (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111(1–3), 601–614.CrossRefGoogle Scholar
  60. Muir, A. (1961). The podzol and podzolic soils. In A. G. Norman (Ed.), Advances in agronomy (pp. 1–56). New York: Academic.Google Scholar
  61. Muukkonen, P., Häkkinen, M., & Mäkipää, R. (2009). Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design. Environmental Monitoring and Assessment, 158(1), 67–76.CrossRefGoogle Scholar
  62. Nabuurs, G. J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W. A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N. H., Sanchez, M. J. S., & Zhang, X. (2007). Forestry. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 541–584). Cambridge: Cambridge University Press.Google Scholar
  63. Nielsen, A., Totland, Ø., & Ohlson, M. (2007). The effect of forest management operations on population performance of Vaccinium myrtillus on a landscape-scale. Basic and Applied Ecology, 8(3), 231–241.CrossRefGoogle Scholar
  64. Odeh, I. O., McBratney, A., & Chittleborough, D. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226.CrossRefGoogle Scholar
  65. Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, A., & Stendahl, J. (2009). Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fennica, 43(2), 209–222.CrossRefGoogle Scholar
  66. Ortiz, C. A., Liski, J., Gärdenäs, A. I., Lehtonen, A., Lundblad, M., Stendahl, J., Ågren, G. I., & Karltun, E. (2013). Soil organic carbon stock changes in Swedish forest soils—a comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling, 251, 221–231.CrossRefGoogle Scholar
  67. Palviainen, M., Finér, L., Kurka, A. M., Mannerkoski, H., Piirainen, S., & Starr, M. (2004). Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil, 263(1), 53–67.CrossRefGoogle Scholar
  68. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.CrossRefGoogle Scholar
  69. Peltoniemi, M., Mäkipää, R., Liski, J., & Tamminen, P. (2004). Changes in soil carbon with stand age—an evaluation of a modelling method with empirical data. Global Change Biology, 10(12), 2078–2091.CrossRefGoogle Scholar
  70. Penne, C., Ahrends, B., Deurer, M., & Böttcher, J. (2010). The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma, 158(3–4), 282–297.CrossRefGoogle Scholar
  71. Post, W. M., Izaurralde, R. C., Mann, L. K., & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soil. Climatic Change, 51(1), 73–99.CrossRefGoogle Scholar
  72. R Core Team. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  73. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43(1), 223–225.CrossRefGoogle Scholar
  74. Rossi, J., Govaerts, A., De Vos, B., Verbist, B., Vervoort, A., Poesen, J., Muys, B., & Deckers, J. (2009). Spatial structures of soil organic carbon in tropical forests—a case study of southeastern Tanzania. Catena, 77(1), 19–27.CrossRefGoogle Scholar
  75. Schöning, I., Totsche, K. U., & Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 136(3–4), 631–642.CrossRefGoogle Scholar
  76. Schulp, C. J. E., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482–490.CrossRefGoogle Scholar
  77. Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141(1–2), 139–148.CrossRefGoogle Scholar
  78. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.CrossRefGoogle Scholar
  79. Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J., & Haddix, M. L. (2006). Fine-resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132(3–4), 471–489.CrossRefGoogle Scholar
  80. Ståhl, G., Boström, B., Lindkvist, H., Lindroth, A., Nilsson, J., & Olsson, M. (2004). Methodological options for quantifying changes in carbon pools in Swedish forests. Studia Forestalia Suecica, 214, 1–46.Google Scholar
  81. Stendahl, J., Johansson, M., Eriksson, E., & Langvall, O. (2010). Soil organic carbon in Swedish spruce and pine forests—differences in stock levels and regional patterns. Silva Fennica, 44(1), 5–21.CrossRefGoogle Scholar
  82. Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.CrossRefGoogle Scholar
  83. Thompson, J. A., & Kolka, R. K. (2005). Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Science Society of America Journal, 69(4), 1086–1093.CrossRefGoogle Scholar
  84. van Groenigen, J. W. (2000). The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, 97(3–4), 223–236.CrossRefGoogle Scholar
  85. van Groenigen, J. W., Siderius, W., & Stein, A. (1999). Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, 87(3–4), 239–259.CrossRefGoogle Scholar
  86. VandenBygaart, A. J., Gregorich, E. G., Angers, D. A., & McConkey, B. G. (2007). Assessment of the lateral and vertical variability of soil organic carbon. Canadian Journal of Soil Science, 87(4), 433–444.CrossRefGoogle Scholar
  87. Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18.CrossRefGoogle Scholar
  88. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.Google Scholar
  89. Worsham, L., Markewitz, D., Nibbelink, N. P., & West, L. T. (2012). A comparison of three field sampling methods to estimate soil carbon content. Forest Science, 58(5), 513–522.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  2. 2.Department of Ecology and Natural ManagementNorwegian University of Life SciencesÅsNorway
  3. 3.f+n: Design & Engineering ConsultingZurichSwitzerland

Personalised recommendations