Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery

  • On Van Nguyen
  • Kensuke KawamuraEmail author
  • Dung Phan Trong
  • Zhe Gong
  • Endan Suwandana


Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002–2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R 2 = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R 2 = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.


HANTS algorithm Land surface temperature MODIS time-series data Red river delta 



This work was partially supported by the Japanese Grant Aid for Human Resource Development Scholarship (JDS), Japan International Cooperation Agency (JICA), for financial support to the first author (Nguyen Van On) for the field survey in Hanoi, Vietnam.


  1. Crosson, W. L., Al-Hamdan, M. Z., Hemmings, S. N. J., & Wade, G. M. (2012). A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sensing of Environment, 119, 315–324.CrossRefGoogle Scholar
  2. Dwyer, J., & Schmidt, G. (2006). The MODIS Reprojection Tool. Earth Sci. Satell. Remote sensing-data, Comput. Process. tools (pp. 162–177). Berlin: Springer.CrossRefGoogle Scholar
  3. General Statistical Office of Viet Nam (2012) Population and employment, 33–132.Google Scholar
  4. GRASS Development Team (2012). Geographic Resources Analysis Support System (GRASS 6) programmer’s manual. Open source geospatial foundation project. Accessed 14 May 2015.
  5. Houghton, J.T., Ding, Y., Griggs, D.J., et al. (2001) IPCC, 2001: Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (p. 881).Google Scholar
  6. Jiménez-Muñoz, & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 108, 4688. doi: 10.1029/2003JD003480.CrossRefGoogle Scholar
  7. Ke, L., Wang, Z.-X., Song, C.-Q., & Lu, Z.-Q. (2011). Reconstruction of MODIS land surface temperature in northeast qinghai-xizang plateau and its comparison with air temperature. Plateau Meteorology, 30, 277–287.Google Scholar
  8. Lei, Z., Yaoming, M., Su, Z., & Salama, M. S. (2010). Estimation of land surface temperature over the tibetan plateau using AVHRR and MODIS data. Advances in Atmospheric Sciences, 27, 1110–1118. doi: 10.1007/s00376-009-9133-0.1.Introduction.CrossRefGoogle Scholar
  9. Miliaresis, G. C. (2009). Regional thermal and terrain modelling of the Afar Depression from MODIS multi-temporal monthly night LST data. International Journal of Remote Sensing, 30, 2429–2436. doi: 10.1080/01431160802562271.CrossRefGoogle Scholar
  10. Miliaresis, G. C. (2013). Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment. Environmental Monitoring and Assessment, 185, 1601–1612. doi: 10.1007/s10661-012-2654-5.CrossRefGoogle Scholar
  11. Miliaresis, G. C. (2014). Daily temperature oscillation enhancement of multitemporal LST imagery. Photogrammetric Engineering Remote Sensing, 80, 423–428. doi: 10.14358/PERS.80.5.000.CrossRefGoogle Scholar
  12. Miliaresis, G. C., & Tsatsaris, A. (2010). Thermal terrain modeling of spatial objects, a tool for environmental and climatic change assessment. Environmental Monitoring and Assessment, 164, 561–572. doi: 10.1007/s10661-009-0913-x.CrossRefGoogle Scholar
  13. NASA/Goddard Space Flight Center (2002) NASA Satellite Confirms Urban Heat Islands Increase Rainfall Around Cities. ScienceDaily. ScienceDaily.Google Scholar
  14. Neteler, M. (2010). Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2, 333–351. doi: 10.3390/rs1020333.CrossRefGoogle Scholar
  15. Neteler, M., & Mitasova, H. (2008). Open source GIS: A GRASS GIS approach, 3rd ed. New York: Springer.Google Scholar
  16. Pinheiro, A. C. T., Mahoney, R., Privette, J. L., & Tucker, C. J. (2006). Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sensing of Environment, 103, 153–164. doi: 10.1016/j.rse.2006.03.009.CrossRefGoogle Scholar
  17. Price, J. C. (1984). Land surface temperature measurements from the split window channels of the NOAA7 advanced very high resolution radiometer. Journal of Geophysical Research, 89, 7231–7237.CrossRefGoogle Scholar
  18. Quattrochi, D. A., & Luvall, J. C. (1999). Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape Ecology, 14, 577–598.CrossRefGoogle Scholar
  19. Roerink, G. J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21, 1911–1917. doi: 10.1080/014311600209814.CrossRefGoogle Scholar
  20. Sobrino, J. A., Coll, C., & Caselles, V. (1991). Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of Environment, 38, 19–34.CrossRefGoogle Scholar
  21. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440. doi: 10.1016/j.rse.2004.02.003.CrossRefGoogle Scholar
  22. Sòria, G., & Sobrino, J. A. (2007). ENVISAT/AATSR derived land surface temperature over a heterogeneous region. Remote Sensing of Environment, 111, 409–422. doi: 10.1016/j.rse.2007.03.017.CrossRefGoogle Scholar
  23. Voogt, J. A., & Oke, T. R. (1998). Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19, 895–920.CrossRefGoogle Scholar
  24. Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384. doi: 10.1016/S0034-4257(03)00079-8.CrossRefGoogle Scholar
  25. Wan, Z., & Dozier, J. (1996). A generalized split- window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34, 892–905.CrossRefGoogle Scholar
  26. Wan, Z., & Li, Z.-L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperatur e from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35, 980–996.CrossRefGoogle Scholar
  27. Xu, Y., & Shen, Y. (2013). Reconstruction of the land surface temperature time series using harmonic analysis. Computers & Geosciences, 61, 126–132. doi: 10.1016/j.cageo.2013.08.009.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • On Van Nguyen
    • 1
  • Kensuke Kawamura
    • 1
    Email author
  • Dung Phan Trong
    • 1
  • Zhe Gong
    • 1
  • Endan Suwandana
    • 2
  1. 1.Graduate School for International Development and CooperationHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Education and Training Center of Banten ProvinceBantenIndonesia

Personalised recommendations