Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type

  • Delphis F. Levia
  • Alexey N. Shiklomanov
  • John T. Van StanII
  • Carrie E. Scheick
  • Shreeram P. Inamdar
  • Myron J. Mitchell
  • Patrick J. McHale
Article

Abstract

Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.

Keywords

Calcium Aluminum Atmospheric deposition Acid–base chemistry Stemflow Throughfall 

References

  1. Bergkvist, B. (1987). Soil solution chemistry and metal budgets of spruce forest ecosystems in S. Sweden. Water, Air, and Soil Pollution, 33, 131–154.CrossRefGoogle Scholar
  2. Binkley, D., & Högberg, P. (1997). Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119–152.CrossRefGoogle Scholar
  3. Cronan, C. S. (1980). Soil solution chemistry of a New Hampshire subalpine ecosystem: a biogeochemical analysis. Oikos, 34, 272–281.CrossRefGoogle Scholar
  4. Cronan, C. S., & Grigal, D. F. (1995). Use of calcium aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.CrossRefGoogle Scholar
  5. Cronan, C. S., April, R., Bartlett, R. J., Bloom, P. R., Driscoll, C. T., Gherini, S. A., Henderson, G. S., Joslin, J. D., Kelly, J. M., Newton, R. M., Pamell, R. A., Patterson, H. P., Raynal, D. J., Schaedle, M., Schofield, C. L., Sucoff, E. I., Tepper, H. B., & Thornton, F. C. (1989). Aluminum toxicity in forests exposed to acidic deposition: the ALBIOS results. Water, Air, and Soil Pollution, 48, 181–192.CrossRefGoogle Scholar
  6. David, M. B., & Driscoll, C. T. (1984). Aluminum speciation and equilibria in soil solutions of a Haplorthod in the Adirondack Mountains (New York). Geoderma, 33, 297–318.CrossRefGoogle Scholar
  7. Decker, K. L. M., & Boerner, R. E. J. (1997). Ca/Al ratio effects on growth and competitive interactions of northern red oak (Quercus rubra) and yellow-poplar (Liriodendron tulipifera). Journal of the Torrey Botanical Society, 124, 286–296.CrossRefGoogle Scholar
  8. Delhaize, E., & Ryan, P. R. (1995). Aluminum toxicity and tolerance in plants. Plant Physiology, 107, 315–321.Google Scholar
  9. Eisalou, H. K., Sengonul, K., Gokbulak, F., Serengil, Y., & Uygur, B. (2013). Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey. Forest Ecology and Management, 289, 371–377.CrossRefGoogle Scholar
  10. Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7, 509–520.CrossRefGoogle Scholar
  11. Falkengren-Grerup, U. (1989). Effect of stemflow on beech forest soils and vegetation in southern Sweden. Journal of Applied Ecology, 26, 341–352.CrossRefGoogle Scholar
  12. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.CrossRefGoogle Scholar
  13. Germer, S., Zimmermann, A., Neill, C., Krusche, A. V., & Elsenbeer, H. (2012). Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest. Forest Ecology and Management, 267, 40–49.CrossRefGoogle Scholar
  14. Godbold, D. L., Fritz, E., & Hüttermann, A. (1988). Aluminum toxicity and forest decline. Proceedings of the National Academy of Sciences, 85, 3888–3892.CrossRefGoogle Scholar
  15. Göransson, A., & Eldhuset, T. (1991). Effects of aluminum on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants. Trees, 5, 136–142.CrossRefGoogle Scholar
  16. Herwitz, S. R. (1986). Episodic stemflow inputs of magnesium and potassium to a tropical forest floor during heavy rainfall events. Oecologia, 70, 423–425.CrossRefGoogle Scholar
  17. Jung, K. H., & Chang, S. X. (2013). Soil and tree chemistry reflected the cumulative impact of acid deposition in Pinus banksiana and Populus tremuloides stands in the Athabasca oil sands region in western Canada. Ecological Indicators, 25, 35–44.CrossRefGoogle Scholar
  18. Kikuchi, R. (2004). Deacidification effect of the litter layer on forest soil during snowmelt runoff- laboratory experiment and its basic formularization for simulation modeling. Chemosphere, 54, 1163–1169.CrossRefGoogle Scholar
  19. Koch, A. S., & Matzner, E. (1993). Heterogeneity of soil and soil solution chemistry under Norway spruce (Picea abies Karst.) and European beech (Fagus sylvatica L.) as influenced by distance from the stem basis. Plant and Soil, 151, 227–237.CrossRefGoogle Scholar
  20. Kopacek, J., Cudlin, P., Svoboda, M., Chmelikova, E., Kana, J., & Picek, T. (2010). Composition of Norway spruce litter and foliage in atmospherically acidified and nitrogen-saturated Bohemian Forest stands. Boreal Environment Research, 15, 413–426.Google Scholar
  21. Levia, D. F., & Frost, E. E. (2003). A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274, 1–29.CrossRefGoogle Scholar
  22. Levia, D. F., & Frost, E. E. (2006). Variability of throughfall volume and solute inputs in wooded ecosystems. Progress in Physical Geography, 30, 605–632.CrossRefGoogle Scholar
  23. Levia, D. F., & Herwitz, S. R. (2000). Physical properties of stemflow water in relation to leachate dynamics: implications for nutrient cycling. Canadian Journal of Forest Research, 30, 662–666.CrossRefGoogle Scholar
  24. Levia, D. F., Van Stan, J. T., Siegert, C. M., Inamdar, S. P., Mitchell, M. J., Mage, S. M., & McHale, P. J. (2011). Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmospheric Environment, 45, 3046–3054.CrossRefGoogle Scholar
  25. Levia, D. F., Michalzik, B., Bischoff, S., Nӓthe, K., Legates, D. R., Gruselle, M. C., & Richter, S. (2013). Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions. Geophysical Research Letters, 40, 1317–1321.CrossRefGoogle Scholar
  26. Maryland State Climate Office. (2012). www.atmos.umd.edu/∼climate (retrieved November 2012).
  27. Nakanishi, A., Shibata, H., Inokura, Y., Nakao, T., Toda, H., Sato, F., & Sasa, K. (2001). Chemical characteristics in stemflow of Japanese cedar in Japan. Water, Air, and Soil Pollution, 130, 709–714.CrossRefGoogle Scholar
  28. Neary, A. J., & Gizyn, W. I. (1994). Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south-central Ontario. Canadian Journal of Forest Research, 24, 1089–1100.CrossRefGoogle Scholar
  29. Nikodem, A., Kodešová, R., Drábek, O., Bubeníčková, L., Borůvka, L., Pavlů, L., & Tejnecký, V. (2010). A numerical study of the impact of precipitation redistribution in a beech forest canopy on water and aluminum transport in a podzol. Vadose Zone Journal, 9, 238–251.CrossRefGoogle Scholar
  30. Pedersen, L. B., & Bille-Hansen, J. (1999). A comparison of litterfall and element fluxes in even aged Norway spruce, Sitka spruce and beech stands in Denmark. Forest Ecology and Management, 114, 55–70.CrossRefGoogle Scholar
  31. Plummer, M. (2014). rjags: Bayesian graphical models using MCMC. R package version 3–13. http://CRAN.R-project.org/package=rjags
  32. R Core Team (2014). R: a language and environment for statistical computing. Vienna:R Foundation for Statistical Computing http://www.R-project.org/.Google Scholar
  33. Riha, S. J., Senesac, G., & Pallant, E. (1986). Effects of forest vegetation on spatial variability of surface mineral soil pH, soluble aluminum and carbon. Water, Air, and Soil Pollution, 31, 929–940.CrossRefGoogle Scholar
  34. Rustad, L. E., & Cronan, C. S. (1995). Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, USA. Biogeochemistry, 29, 107–129.CrossRefGoogle Scholar
  35. Sato, K., & Wakamatsu, T. (2001). Soil solution chemistry in forests with granite bedrock in Japan. Water, Air, and Soil Pollution, 130, 1001–1006.CrossRefGoogle Scholar
  36. Schecher, W. D., & Driscoll, C. T. (1987). An evaluation of uncertainty associated with aluminum equilibrium calculations. Water Resources Research, 23, 525–534.CrossRefGoogle Scholar
  37. Schildnecht, P. A., & Vidal, B. C. (2002). A role for the cell wall in Al3+ resistance and toxicity: crystallinity and availability of negative charges. International Archives of Biosciences, 1, 1087–1095.Google Scholar
  38. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583–639.CrossRefGoogle Scholar
  39. Sposito, G. (1996). The environmental chemistry of aluminum. Boca Raton:CRC Press 480 p.Google Scholar
  40. Turk, T. (1992). Die wasser- und stoffdynamik in zwei unterschieldlich geschädigten Fichtenstandorten im Fichtelgebirge. Bayreuther Bodenkundl. Berichte, Bd. 22.Google Scholar
  41. Turner, R. S., Johnson, A. H., & Wang, D. (1985). Biogeochemistry of aluminum in McDonald’s Branch watershed, New Jersey Pine Barrens. Journal of Environmental Quality, 14, 314–323.CrossRefGoogle Scholar
  42. Van Stan, J. T., Siegert, C. M., Levia, D. F., & Scheick, C. E. (2011). Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agricultural and Forest Meteorology, 151, 1277–1286.CrossRefGoogle Scholar
  43. Vanguelova, E. I., Hirano, Y., Eldhuset, T. D., Sas-Paszt, L., Bakker, M. R., Püttsepp, Ü., Brunner, I., Lõhmus, K., & Godbold, D. (2007). Tree fine root Ca/Al molar ratio—indicator of Al and acidity stress. Plant Biosystems, 141, 460–480.CrossRefGoogle Scholar
  44. Weathers, K. C., & Ponette-Gonzalez, A. G. (2011). Atmospheric deposition. In D. F. Levia, D. E. Carlyle-Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry: synthesis of past directions and future research (pp. 357–370), Ecological Studies Series No. 216. Heidelberg: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Delphis F. Levia
    • 1
  • Alexey N. Shiklomanov
    • 2
    • 7
  • John T. Van StanII
    • 3
  • Carrie E. Scheick
    • 4
  • Shreeram P. Inamdar
    • 5
  • Myron J. Mitchell
    • 6
  • Patrick J. McHale
    • 6
  1. 1.Departments of Geography and Plant and Soil SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of DelawareNewarkUSA
  3. 3.Department of Geology and GeographyGeorgia Southern UniversityStatesboroUSA
  4. 4.Department of GeographyUniversity of DelawareNewarkUSA
  5. 5.Department of Plant and Soil SciencesUniversity of DelawareNewarkUSA
  6. 6.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  7. 7.Department of Earth and EnvironmentBoston UniversityBostonUSA

Personalised recommendations