Application of multiple toxicity tests in monitoring of landfill leachate treatment efficiency

  • Gabriela KalčíkováEmail author
  • Marija Zupančič
  • Erika Andrea Levei
  • Mirela Miclean
  • Andrew J. Englande
  • Andreja Žgajnar Gotvajn


Leachate from a closed landfill used for co-disposal of municipal and tannery waste was submitted to coagulation treatment, air stripping, adsorption on granular activated carbon, and Fenton oxidation with the aim to reduce toxicity of the leachate. Optimal operational conditions for each process were identified. The performance of the treatment was monitored by determination of organic matter (COD, DOC, BOD5), inorganic components (N-NH4 +, Cl, alkalinity, metals), organic compounds (BTEX, PAHs, PCBs, OCPs) while changes in toxicity were followed by multiple toxicity tests. Among the applied treatment techniques, adsorption on granular activated carbon was the most efficient method for removal of organic matter and metals while air stripping was the most efficient for removal of N-NH4 + and reduction of toxicity. Lower reduction of organic matter content and toxicity was obtained during coagulation treatment. Fenton oxidation was effective for removal of COD; however, it negatively affected toxicity reduction. The combination of adsorption on granular activated carbon and air stripping led to an appreciable reduction of organic and inorganic pollutants and to leachate detoxification. Application of bioassays was helpful for assessing suitability of treatment methods and demonstrated that they are, together with physicochemical parameters, an indispensable part for monitoring of treatment efficiency.


Bioassays Combined treatment Landfill Leachate Toxicity 


  1. Abdul, J. M., Colville, A., Lim, R., Vigneswaran, S., & Kandasamy, J. (2012). Use of duckweed (Lemna disperma) to assess the phytotoxicity of the products of Fenton oxidation of metsulfuron methyl. Ecotoxicology and Environmental Safety, 83, 89–95.CrossRefGoogle Scholar
  2. Aziz, H. A., Alias, S., Adlan, M. N., Asaari, F. A. H., & Zahari, M. S. (2007). Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource Technology, 98(1), 218–220.CrossRefGoogle Scholar
  3. Beaven, R. P., Knox, K., Gronow, J. R., Hjelmar, O., Greedy, D., & Scharff, H. (2014). A new economic instrument for financing accelerated landfill aftercare. Waste Management, 34(7), 1191–1198.CrossRefGoogle Scholar
  4. Benatti, C. T., da Costa, A. C., & Tavares, C. R. (2009). Characterization of solids originating from the Fenton’s process. Journal of Hazardous Materials, 163(2–3), 1246–1253.CrossRefGoogle Scholar
  5. Bernard, C., Colin, J., & Dû-Delepierre, A. L. (1997). Estimation of the hazard of landfills through toxicity testing of leachates: II. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere, 35(11), 2783–2796.CrossRefGoogle Scholar
  6. Bortolotto, T., Bertoldo, J. B., de Silveira, F. Z., Defaveri, T. M., Silvano, J., & Pich, C. T. (2009). Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays. Environmental Toxicology and Pharmacology, 28(2), 288–293.CrossRefGoogle Scholar
  7. Bundschuh, M., Zubrod, J. P., & Schulz, R. (2011). The functional and physiological status of Gammarus fossarum (Crustacea; Amphipoda) exposed to secondary treated wastewater. Environmental Pollution, 159(1), 241–249.CrossRefGoogle Scholar
  8. Christensen, T. (2011). Solid waste technology and management. Chichester:John Wiley and Sons.Google Scholar
  9. Clément, B., & Merlin, G. (1995). The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Science of the Total Environment, 170(1–2), 71–79.CrossRefGoogle Scholar
  10. Comstock, S. E. H., Boyer, T. H., Graf, K. C., & Townsend, T. G. (2010). Effect of landfill characteristics on leachate organic matter properties and coagulation treatability. Chemosphere, 81(7), 976–983.CrossRefGoogle Scholar
  11. Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2010). Ozonation as polishing treatment of mature landfill leachate. Journal of Hazardous Materials, 182(1–3), 730–734.CrossRefGoogle Scholar
  12. Cossu, R. (2010). Technical evolution of landfilling. Waste Management, 30(6), 947–948.CrossRefGoogle Scholar
  13. Daphtoxkit F™ magna. (1996). Toxkit protokol, MicroBio Tests Inc.Google Scholar
  14. Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by Fenton process. Water Research, 40(20), 3683–3694.CrossRefGoogle Scholar
  15. Devare, M., & Bahadis, M. (1994). Biological monitoring of landfill leachate using plants and luminescent bacteria. Chemosphere, 28(2), 261–271.CrossRefGoogle Scholar
  16. Eckenfelder, W. W. (1970). Water pollution control: experimental procedures for process design. New York:Pemberton press.Google Scholar
  17. EPA. (2003). Available on-line (31.12.2012):
  18. EPA 8100. (1986). Method for determination of polynuclear aromatic hydrocarbons (PAH).Google Scholar
  19. Faust, R. A. (1995). Condensed toxicity summary for dibenz[a,h]antracene. Available on-line (22.4.2012):
  20. Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials, 171(1–3), 54–60.CrossRefGoogle Scholar
  21. Gonze, E., Commenges, N., Gonthier, Y., & Bernis, A. (2003). High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chemical Engineering Journal, 92(1–3), 215–225.CrossRefGoogle Scholar
  22. Guo, J.-S., Abbas, A. A., Chen, Y.-P., Liu, Z. P., Fang, F., & Chen, P. (2010). Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Journal of Hazardous Materials, 178(1–3), 699–705.CrossRefGoogle Scholar
  23. ISO 5815-1. (2003). Water quality—determination of biochemical oxygen demand after n days (BODn), part 1: dilution and seeding method with allylthiourea addition. Edition 1, Geneva.Google Scholar
  24. ISO 6060. (1989). Water quality—determination of the chemical oxygen demand. Edition 2, Geneva.Google Scholar
  25. ISO 6468. (1996). Water quality—determination of certain organochlorine insecticides, polychlorinated biphenyls and chlorobenzenes—gas chromatographic method after liquid–liquid extraction. Edition 1, Geneva.Google Scholar
  26. ISO 7150–1. (1984). Water quality—determination of ammonium, part 1: manual spectrometric method. Edition 1, Geneva.Google Scholar
  27. ISO 8192. (2007). Water quality—test for inhibition of oxygen consumption by activated sludge for carbonaceous and ammonium oxidation. Edition 2, Geneva.Google Scholar
  28. ISO 8245. (1999). Water quality—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Edition 2, Geneva.Google Scholar
  29. ISO 9562. (2004). Water quality—determination of adsorbable organically bound halogens (AOX). Edition 3, Geneva.Google Scholar
  30. ISO 10530. (1992). Water quality—determination of dissolved sulfide—photometric method using methylene blue. Edition 1, Geneva.Google Scholar
  31. ISO 11348–3. (2007). Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part 3: method using freezed-dried bacteria. Edition 2, Geneva.Google Scholar
  32. ISO 11423-1. (1997). Water quality—determination of benzene and some derivatives—part 1: head-space gas chromatographic method. Edition 1, Geneva.Google Scholar
  33. ISO 20079. (2005). Water quality—determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor)—duckweed growth inhibition test. Edition 1, Geneva.Google Scholar
  34. Jemec, A., Tišler, T., & Žgajnar Gotvajn, A. (2012). Assessment of landfill leachate toxicity reduction after biological treatment. Archives of Environmental Contamination and Toxicology, 62(2), 210–221.CrossRefGoogle Scholar
  35. Kalčíková, G., Vávrová, M., Zagorc-Končan, J., & Žgajnar Gotvajn, A. (2011). Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests. Environmental Technology, 32(12), 1345–1353.CrossRefGoogle Scholar
  36. Klimiuk, E., & Kulikowska, D. (2004). Effectiveness of organics and nitrogen removal from municipal landfill leachate in single- and two-stage SBR systems. Polish Journal of Environmental Studies, 13(5), 525–532.Google Scholar
  37. Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981–5985.CrossRefGoogle Scholar
  38. Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of Hazardous Materials, 129(1–3), 80–100.CrossRefGoogle Scholar
  39. Municipality Vrhnika. (2009). Available on-line (29.12.2012):
  40. MŽP (2007). The guideline of the Department of Waste Management to determine the ecotoxicity of waste. Prague:Ministry of the Environment of the Czech Republic (In Czech).Google Scholar
  41. Noma, Y., Yamane, S., & Kida, A. (2001). Adsorbable organic halides (AOX), AOX formation potential, and PCDDs/DFs in landfill leachate and their removal in water treatment processes. Journal of Material Cycles and Waste Management, 3(2), 126–134.Google Scholar
  42. Official Gazette of Republic of Slovenia (2008). Decree on the emission of substance in the discharge of landfill leachate. ULRS, 6, 8219–8221 (In Slovene).Google Scholar
  43. Paxéus, N. (2000). Organic compounds in municipal landfill leachates. Water Science and Technology, 42(7–8), 323–333.Google Scholar
  44. Persoone, G., Jasperse, E., & Claus, C. (1984). Ecotoxicological testing for the marine envirnoment. Vol. 2. Breden:State University Ghent and Institute for Marine Scientific Research.Google Scholar
  45. Qu, X., He, P. J., Shao, L. M., & Lee, D. J. (2008). Heavy metals mobility in full-scale bioreactor landfill: initial stage. Chemosphere, 70(5), 769–777.CrossRefGoogle Scholar
  46. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.CrossRefGoogle Scholar
  47. Rivas, F. J., Beltrán, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: sequential coagulation–flocculation + chemical oxidation process. Journal of Hazardous Materials, 116(1–2), 95–102.CrossRefGoogle Scholar
  48. Singh, S. K., Moody, C. M., & Townsend, T. G. (2014). Ozonation pretreatment for stabilized landfill leachate high-pressure membrane treatment. Desalination, 344, 163–170.CrossRefGoogle Scholar
  49. Silva, A. C., Dezotti, M., & Sant’Anna Jr., G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55(2), 207–214.CrossRefGoogle Scholar
  50. Sri Shalini, S., & Joseph, K. (2012). Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Waste Management, 32(12), 2385–2400.CrossRefGoogle Scholar
  51. Standard methods for the examination of water and wastewater. (2012). Edition 22. Washington: American Water Works Association/American Public Works Association/Water Environment.Google Scholar
  52. Svensson, B. M., Mathiasson, L., Mårtensson, L., & Bergström, S. (2005). Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environmental Monitoring and Assessment, 102(1–3), 309–321.CrossRefGoogle Scholar
  53. Tekin, H., Bilkay, O., Ataberk, S. S., Balta, T. H., Ceribasi, I. H., Sanin, F. D., Dilek, F. B., & Yetis, U. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, 136(2), 258–265.CrossRefGoogle Scholar
  54. Tigini, V., Prigione, V., & Varese, G. C. (2014). Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Science of the Total Environment, 487, 335–341.CrossRefGoogle Scholar
  55. Timur, H., & Özturk, I. (1999). Anaerobic sequencing batch reactor treatment of landfill leachate. Water Research, 33(15), 3225–3230.CrossRefGoogle Scholar
  56. Tsarpali, V., Kamilari, M., & Dailianis, S. (2012). Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions. Journal of Hazardous Materials, 233–234, 163–171.CrossRefGoogle Scholar
  57. Wilke, B. M., Riepert, F., Koch, C., & Kühne, T. (2008). Ecotoxicological characterization of hazardous waste. Ecotoxicology and Environmental Safety, 70(2), 283–293.CrossRefGoogle Scholar
  58. Žgajnar Gotvajn, A., Tišler, T., & Zagorc-Končan, J. (2009). Comparison of different treatment strategies for industrial landfill leachate. Journal of Hazardous Materials, 162(2–3), 1446–1456.CrossRefGoogle Scholar
  59. Žgajnar Gotvajn, A., Zagorc-Končan, J., & Cotman, M. (2011). Fenton’s oxidative treatment of municipal landfill leachate as an alternative to biological process. Desalination, 275(1–3), 269–275.CrossRefGoogle Scholar
  60. Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z., & Renhua, H. (2009). Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Science of the Total Environment, 407(10), 3385–3391.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabriela Kalčíková
    • 1
    Email author
  • Marija Zupančič
    • 1
  • Erika Andrea Levei
    • 2
  • Mirela Miclean
    • 2
  • Andrew J. Englande
    • 3
  • Andreja Žgajnar Gotvajn
    • 1
  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.INCDO-INOE 2000, Research Institute for Analytical InstrumentationCluj-NapocaRomania
  3. 3.Department of Global Environmental Health SciencesTulane University School of Public Health and Tropical MedicineNew OrleansUSA

Personalised recommendations