Advertisement

Screening of multiple hormonal activities in water and sediment from the river Nile, Egypt, using in vitro bioassay and gonadal histology

  • Alaa G. M. OsmanEmail author
  • Khaled Y. AbouelFadl
  • Angela Krüger
  • Werner Kloas
Article

Abstract

In Egypt, until yet no records are available regarding possible multiple hormonal activities in the aquatic systems and especially in the river Nile. In this paper, in vitro yeast estrogen screen (YES) and yeast androgen screen (YAS) were used to assess (for the first time) the multiple hormonal activities in surface waters and sediments of the river Nile. This study aimed to determine whether river Nile water can cause changes in gonadal histology of Nile tilapia (Oreochromis niloticus niloticus). All water samples exhibited extremely low levels of estrogenicity. Estrogenicity was nearly not detected in any of the sediment samples. Unlike the estrogenicity, significant androgenic activities were recorded in the water and sediment samples along the course of the river Nile. The present study reports for the first time quantification anti-estrogenic and anti-androgenic activities with high levels in both water and sediment of the river Nile. The greatest anti-estrogenic and anti-androgenic activities were observed in samples from downstream river Nile. These results indicated that the anti-estrogenic and anti-androgenic activities along the Nile course were great and the pollution of the sites at downstream was more serious than the upstream sites due to industrial and anthropogenic activities at these sites. Good correlations were observed among some hormonal activities, suggesting coexistence of these contaminants in the environmental matrices. There were no signs of sexual disruption in any of the gonads analyzed from either male or female Nile tilapia, demonstrating that no hormonal activity present along the Nile course was sufficient to induce adverse effects on reproductive development. Further investigation is necessary to identify the compounds responsible for the hormonal activities in the river Nile and to examine effects of very low levels of hormonally active compounds on gonadal histology, as well as in the development of more sensitive biomarkers.

Keywords

Multiple hormonal activities YES YAS River Nile Nile tilapia Gonadal histology 

Notes

Acknowledgments

This work was funded by Science and Technology development fund, Egypt (Project ID 5406). The first author is grateful for the continuous support from the Alexander von Humboldt Foundation.

References

  1. Andersen, M. E., Conolly, R. B., Faustman, E. M., Kavlock, R. J., Portier, C. J., Sheehan, D. M., et al. (1999). Quantitative mechanistically based dose-response modeling with endocrine-active compounds. Environmental Health Perspectives, 107(Suppl 4), 631–638.CrossRefGoogle Scholar
  2. Anwar, W. A. (2003). Environmental health in Egypt. International Journal of Hygiene and Environmental Health, 206(4−5), 339–350.CrossRefGoogle Scholar
  3. Baatrup, E., & Junge, M. (2001). Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy Poecilia reticulata. [Research Support, Non-U.S. Gov’t]. Environmental Health Perspectives, 109(10), 1063–1070.CrossRefGoogle Scholar
  4. Bancroft, J. D., & Stevens, A. (1996). Theory and practice of histological techniques. New York: Churchill Livingstone.Google Scholar
  5. Bayley, M., Larsen, P. F., Baekgaard, H., & Baatrup, E. (2003). The effects of vinclozolin, an anti-androgenic fungicide, on male guppy secondary sex characters and reproductive success. [Research Support, Non-U.S. Gov’t]. Biology of Reproduction, 69(6), 1951–1956. doi: 10.1095/biolreprod.103.017780.CrossRefGoogle Scholar
  6. Beck, I. C., Bruhn, R., & Gandrass, J. (2006). Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere, 63(11), 1870–1878. doi: 10.1016/j.chemosphere.2005.10.022.CrossRefGoogle Scholar
  7. Bistan, M., Podgorelec, M., Logar, R. M., & Tisler, T. (2012). Yeast estrogen screen assay as a tool for detecting estrogenic activity in water bodies. Food Technol Biotech, 50(4), 427–433.Google Scholar
  8. Breithofer, A., Graumann, K., Scicchitano, M. S., Karathanasis, S. K., Butt, T. R., & Jungbauer, A. (1998). Regulation of human estrogen receptor by phytoestrogens in yeast and human cells. [Research Support, Non-U.S. Gov’t]. The Journal of Steroid Biochemistry and Molecular Biology, 67(5−6), 421–429.CrossRefGoogle Scholar
  9. Buckley, J. A. (2010). Quantifying the antiestrogen activity of wastewater treatment plant effluent using the yeast estrogen screen. Environmental Toxicology and Chemistry/SETAC, 29(1), 73–78. doi: 10.1002/etc.11.CrossRefGoogle Scholar
  10. Campbell, C. G., Borglin, S. E., Green, F. B., Grayson, A., Wozei, E., & Stringfellow, W. T. (2006). Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. [Review]. Chemosphere, 65(8), 1265–1280. doi: 10.1016/j.chemosphere.2006.08.003.CrossRefGoogle Scholar
  11. Cargouet, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S., & Levi, Y. (2004). Assessment of river contamination by estrogenic compounds in Paris area (France). [Research Support, Non-U.S. Gov’t]. The Science of the Total Environment, 324(1−3), 55–66. doi: 10.1016/j.scitotenv.2003.10.035.CrossRefGoogle Scholar
  12. Christiaens, V., Berckmans, P., Haelens, A., Witters, H., & Claessens, F. (2005). Comparison of different androgen bioassays in the screening for environmental (anti)androgenic activity. [Research Support, Non-U.S. Gov’t]. Environmental Toxicology and Chemistry/SETAC, 24(10), 2646–2656.CrossRefGoogle Scholar
  13. De Boever, P., Demaré, W., Vanderperren, E., Cooreman, K., Bossier, P., & Verstraete, W. (2001). Optimization of a yeast estrogen screen and its applicability to study the release of estrogenic isoflavones from a soygerm powder. Environmental Health Perspectives, 109(7), 691–697.CrossRefGoogle Scholar
  14. Doyle, C. J., & Lim, R. P. (2002). The effect of 17beta-estradiol on the gonopodial development and sexual activity of Gambusia holbrooki. [Research Support, Non-U.S. Gov’t]. Environmental Toxicology and Chemistry/SETAC, 21(12), 2719–2724.CrossRefGoogle Scholar
  15. Dumont, H. J. (2009). The Nile: origin, environments, limnology and human use. (Monographiae Biologicae 89). Dordrecht: Springer.CrossRefGoogle Scholar
  16. El-Kady, A. A., Abdel-Wahhab, M. A., Henkelmann, B., Belal, M. H., Morsi, M. K., Galal, S. M., et al. (2007). Polychlorinated biphenyl, polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran residues in sediments and fish of the River Nile in the Cairo region. Chemosphere, 68(9), 1660–1668. doi: 10.1016/j.chemosphere.2007.03.066.CrossRefGoogle Scholar
  17. El-Saba, A., Abd Rabou, M. I., El-Sakhawy, M. A., El-Shammaa, M. A., & Hussein, S. M. (2013). Seasonal changes in the histology of the ovaries of Nile tilapia (Oreochromis niloticus). Journal of Veterinary Anatomy, 2, 1–21.Google Scholar
  18. Esteban, S., Gorga, M., Petrovic, M., Gonzalez-Alonso, S., Barcelo, D., & Valcarcel, Y. (2014). Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. [Research Support, Non-U.S. Gov’t]. The Science of the Total Environment, 466−467, 939–951. doi: 10.1016/j.scitotenv.2013.07.101.CrossRefGoogle Scholar
  19. Fang, Y. X., Ying, G. G., Zhang, L. J., Zhao, J. L., Su, H. C., Yang, B., et al. (2012). Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region. [Research Support, Non-U.S. Gov’t]. Ecotoxicology and Environmental Safety, 76(2), 143–152. doi: 10.1016/j.ecoenv.2011.10.003.CrossRefGoogle Scholar
  20. FAO (2011). Information Products for Nile Basin Water Resources Management. Project GCP/INT/945/ITA 2004 to 2009. Rome.Google Scholar
  21. Gadd, J., Stewart, C., & Sikes, E. (2005). Estrogenic activity and known environmental estrogens in sewage effluent, Hamilton, New Zealand. Aust J Ecotox, 11, 149–154.Google Scholar
  22. Gammal, H. A., & El Shazely, H. E. Water quality management scenarios in Rosetta river Nile branch, Egypt. In Twelfth International Water Technology Conference, Alexandria, Egypt, 2008 (12pp).Google Scholar
  23. Garcia-Reyero, N., Grau, E., Castillo, M., Lopez de Alda, M. J., Barcelo, D., & Pina, B. (2001). Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. [Research Support, Non-U.S. Gov’t]. Environmental Toxicology and Chemistry/SETAC, 20(6), 1152–1158.CrossRefGoogle Scholar
  24. Gray, L. E., Wolf, C., Lambright, C., Mann, P., Price, M., Cooper, R. L., et al. (2006). Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p′-DDE, and ketoconazole) and toxic substances (dibutyl- and diethyl-hexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health, 15, 94–118.CrossRefGoogle Scholar
  25. Grund, S., Higley, E., Schonenberger, R., Suter, M. J., Giesy, J. P., Braunbeck, T., et al. (2011). The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. [Research Support, Non-U.S. Gov’t]. Environmental Science and Pollution Research International, 18(3), 446–460. doi: 10.1007/s11356-010-0390-3.CrossRefGoogle Scholar
  26. Hachfi, L., Couvray, S., Simide, R., Tarnowska, K., Pierre, S., Gaillard, S., et al. (2012). Impact of endocrine disrupting chemicals [EDCs] on hypothalamic-pituitary-gonad-liver [HPGL] axis in fish. World Journal Fish Marine Science, 4, 14–30.Google Scholar
  27. Hogan, A., Peck, M., van Dam, R., & Kennett, R. (2005). Screening for endocrine disrupting activity in surface waters of Kakadu National Park. Ecological Management Restoration, 6, 219–221.CrossRefGoogle Scholar
  28. Houtman, C. J., Booij, P., Jover, E., Pascual del Rio, D., Swart, K., van Velzen, M., et al. (2006). Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere, 65(11), 2244–2252. doi: 10.1016/j.chemosphere.2006.05.043.CrossRefGoogle Scholar
  29. Isobe, T., Serizawa, S., Horiguchi, T., Shibata, Y., Managaki, S., Takada, H., et al. (2006). Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environmental Pollution, 144(2), 632–638. doi: 10.1016/j.envpol.2006.01.030.CrossRefGoogle Scholar
  30. Jobling, S., Burn, R. W., Thorpe, K., Williams, R., & Tyler, C. (2009). Statistical modeling suggests that antiandrogens in effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers. [Research Support, Non-U.S. Gov’t]. Environmental Health Perspectives, 117(5), 797–802. doi: 10.1289/ehp.0800197.CrossRefGoogle Scholar
  31. Kirk, L. A., Tyler, C. R., Lye, C. M., & Sumpter, J. P. (2002). Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works. [Research Support, Non-U.S. Gov’t]. Environmental Toxicology and Chemistry/SETAC, 21(5), 972–979.CrossRefGoogle Scholar
  32. Kloas, W. (2002). Amphibians as a model for the study of endocrine disruptors. International Review of Cytology, 216, 1–57.Google Scholar
  33. Krein, A., Pailler, J.-Y., Guignard, C., Gutleb, A. C., Hoffmann, L., Meyer, B., et al. (2012). Determination of estrogen activity in river waters and wastewater in Luxembourg by chemical analysis and the yeast estrogen screen assay. Environment and Pollution, 1, 86–96.CrossRefGoogle Scholar
  34. Labadie, P., & Budzinski, H. (2008). Determination of steroidal hormone profiles along the Jalle d'Eysines River (near Bordeaux, France). Environmental Science and Technology, 14, 5113–5120.Google Scholar
  35. Lee, B., Ohno, K., Kamei, T., Magara, Y., Lee, S., & Lee, C. (2003). Estrogenic activity level of Nakdong river basin and its control by water treatment processes. Journal of Water and Environment Technology, 1, 203–208.CrossRefGoogle Scholar
  36. Legler, J., Leonards, P., Spenkelink, A., & Murk, A. J. (2003). In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity. [Research Support, Non-U.S. Gov’t]. Ecotoxicology, 12(1-4), 239–249.CrossRefGoogle Scholar
  37. Lopez de Alda, M. J., Gil, A., Paz, E., & Barcelo, D. (2002). Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospray-mass spectrometry. [Research Support, Non-U.S. Gov’t]. The Analyst, 127(10), 1299–1304.CrossRefGoogle Scholar
  38. Lorenzen, A., Hendel, J. G., Conn, K. L., Bittman, S., Kwabiah, A. B., Lazarovitz, G., et al. (2004). Survey of hormone activities in municipal biosolids and animal manures. [Research Support, Non-U.S. Gov’t]. Environmental Toxicology, 19(3), 216–225. doi: 10.1002/tox.20014.CrossRefGoogle Scholar
  39. Murk, A. J., Legler, J., van Lipzig, M. M., Meerman, J. H., Belfroid, A. C., Spenkelink, A., et al. (2002). Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. [In Vitro]. Environmental Toxicology and Chemistry / SETAC, 21(1), 16–23.CrossRefGoogle Scholar
  40. Nolan, M., Jobling, S., Brighty, G., Sumpter, J. P., & Tyler, C. R. (2001). A histological description of intersexuality in the roach. Journal of Fish Biology, 58, 160–176.CrossRefGoogle Scholar
  41. Osman, A. G. M., & Kloas, W. (2010). Water quality and heavy metal monitoring in water, sediments, and tissues of the African catfish Clarias gariepinus (Burchell, 1822) from the river Nile, Egypt. Journal of Environmental Protection, 1(4), 12.CrossRefGoogle Scholar
  42. Osman, A. G. M., Abd El Reheem, A. M., AbuelFadl, K. Y., & GadEl-Rab, A. G. (2010). Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science, 2(11), 10.CrossRefGoogle Scholar
  43. Osman, A. G. M., Abd El Reheem, A.-E.-B. M., Moustafa, M. A., Mahmoud, U. M., Abuel-Fadl, K. Y., & Kloas, W. (2011). In situ evaluation of the genotoxic potential of the river Nile: I. Micronucleus and nuclear lesion tests of erythrocytes of Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Toxicological and Environmental Chemistry, 93(5), 1002–1017. doi: 10.1080/02772248.2011.564496.CrossRefGoogle Scholar
  44. Osman, A. G. M., Abuel-Fadl, K. Y., & Kloas, W. (2012). In situ evaluation of the genotoxic potential of the river Nile: II. Detection of DNA strand-breakage and apoptosis in Oreochromis niloticus niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Mutation Research, 747(1), 14–21. doi: 10.1016/j.mrgentox.2012.02.013.CrossRefGoogle Scholar
  45. Pawlowski, S., Ternes, T. A., Bonerz, M., Rastall, A. C., Erdinger, L., & Braunbeck, T. (2004). Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. [su]. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 18(1), 129–138.CrossRefGoogle Scholar
  46. Petrovic, M., Eljarrat, E., Lopez De Alda, M. J., & Barcelo, D. (2004). Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data. [Review]. Analytical and Bioanalytical Chemistry, 378(3), 549–562. doi: 10.1007/s00216-003-2184-7.CrossRefGoogle Scholar
  47. Purvis, I. J., Chotai, D., Dykes, C. W., Lubahn, D. B., French, F. S., Wilson, E. M., et al. (1991). An androgen-inducible expression system for Saccharomyces cerevisiae. Gene, 106(1), 35–42.CrossRefGoogle Scholar
  48. Routledge, E. J., & Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry / SETAC, 15(3), 241–248.CrossRefGoogle Scholar
  49. Sohoni, P., & Sumpter, J. P. (1998). Several environmental oestrogens are also anti-androgens. [Research Support, Non-U.S. Gov’t]. The Journal of Endocrinology, 158(3), 327–339.CrossRefGoogle Scholar
  50. Spengler, P., Korner, W., & Metzger, J. W. (2001). Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. [Research Support, Non-U.S. Gov't]. Environmental Toxicology and Chemistry / SETAC, 20(10), 2133–2141.CrossRefGoogle Scholar
  51. Sun, H., Xu, X. L., Xu, L. C., Song, L., Hong, X., Chen, J. F., et al. (2007). Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. [Research Support, Non-U.S. Gov't]. Chemosphere, 66(3), 474–479. doi: 10.1016/j.chemosphere.2006.05.059.CrossRefGoogle Scholar
  52. Sun, H., Xu, X. L., Qu, J. H., Hong, X., Wang, Y. B., Xu, L. C., et al. (2008). 4-Alkylphenols and related chemicals show similar effect on the function of human and rat estrogen receptor alpha in reporter gene assay. Chemosphere, 71(3), 582–588. doi: 10.1016/j.chemosphere.2007.09.031.CrossRefGoogle Scholar
  53. Tollefsen, K. E., Harman, C., Smith, A., & Thomas, K. V. (2007). Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. [Research Support, Non-U.S. Gov't]. Marine Pollution Bulletin, 54(3), 277–283. doi: 10.1016/j.marpolbul.2006.07.012.CrossRefGoogle Scholar
  54. Urbatzka, R., van Cauwenberge, A., Maggioni, S., Vigano, L., Mandich, A., Benfenati, E., et al. (2007). Androgenic and antiandrogenic activities in water and sediment samples from the river Lambro, Italy, detected by yeast androgen screen and chemical analyses. [Research Support, Non-U.S. Gov't]. Chemosphere, 67(6), 1080–1087. doi: 10.1016/j.chemosphere.2006.11.041.CrossRefGoogle Scholar
  55. Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B., Gerritsen, A., et al. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. [Research Support, Non-U.S. Gov't]. Chemosphere, 59(4), 511–524. doi: 10.1016/j.chemosphere.2004.12.053.CrossRefGoogle Scholar
  56. Vigano, L., Benfenati, E., van Cauwenberge, A., Eidem, J. K., Erratico, C., Goksoyr, A., et al. (2008). Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays. [Research Support, Non-U.S. Gov't]. Chemosphere, 73(7), 1078–1089. doi: 10.1016/j.chemosphere.2008.07.057.CrossRefGoogle Scholar
  57. Wang, L., Ying, G. G., Zhao, J. L., Liu, S., Yang, B., Zhou, L. J., et al. (2011). Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. [Research Support, Non-U.S. Gov't]. Environmental Pollution, 159(1), 148–156. doi: 10.1016/j.envpol.2010.09.017.CrossRefGoogle Scholar
  58. Wang, L., Ying, G. G., Chen, F., Zhang, L. J., Zhao, J. L., Lai, H. J., et al. (2012). Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. [Research Support, Non-U.S. Gov't]. Environmental Pollution, 165, 241–249. doi: 10.1016/j.envpol.2011.10.005.CrossRefGoogle Scholar
  59. Witters, H. E., Vangenechten, C., & Berckmans, P. (2001). Detection of estrogenic activity in Flemish surface waters using an in vitro recombinant assay with yeast cells. [Research Support, Non-U.S. Gov't]. Water science and Technology: A Journal of the International Association on Water Pollution Research, 43(2), 117–123.Google Scholar
  60. Xue, N., Xu, X., & Jin, Z. (2005). Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir. [Research Support, Non-U.S. Gov't]. Chemosphere, 61(11), 1594–1606. doi: 10.1016/j.chemosphere.2005.04.091.CrossRefGoogle Scholar
  61. Yang, M., Wang, K., Shen, Y., & Wu, M. (2011). Evaluation of estrogenic activity in surface water and municipal wastewater in Shanghai, China. [Research Support, Non-U.S. Gov't]. Bulletin of Environmental Contamination and Toxicology, 87(3), 215–219. doi: 10.1007/s00128-011-0334-8.CrossRefGoogle Scholar
  62. Zhao, J. L., Ying, G. G., Yang, B., Liu, S., Zhou, L. J., Chen, Z. F., et al. (2011). Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays. [Research Support, Non-U.S. Gov't]. Environmental Toxicology and Chemistry / SETAC, 30(10), 2208–2215. doi: 10.1002/etc.625.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alaa G. M. Osman
    • 1
    • 2
    Email author
  • Khaled Y. AbouelFadl
    • 3
  • Angela Krüger
    • 4
  • Werner Kloas
    • 2
    • 5
  1. 1.Department of Zoology, Faculty of ScienceAl-Azhar University (Assiut Branch)AssiutEgypt
  2. 2.Department of Ecophysiology and AquacultureLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Department of Fisheries BiologyNational Institute of Oceanography and FisheriesHurghadaEgypt
  4. 4.Department of Chemical Analytics and BiogeochemistryLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  5. 5.Department of Endocrinology, Institute of Biology, Faculty of Life SciencesHumboldt University of BerlinBerlinGermany

Personalised recommendations