Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact

  • F. SemprucciEmail author
  • F. Frontalini
  • C. Sbrocca
  • E. Armynot du Châtelet
  • V. Bout-Roumazeilles
  • R. Coccioni
  • M. Balsamo


The effects of the human impact on the coastal environments and relative biota can be different and even greater than those derived by natural fluctuations. The major disturbance causes in the coastal systems are rivers that may be important sources of nutrients and pollutants, particularly in a semi-closed basin such as the Adriatic Sea. In this context, we investigated the distribution of both meiobenthic and nematode assemblages in the Central Adriatic Sea to evaluate whether and how they are influenced by riverine discharges and which faunal descriptors are the most effective in detecting this type of stress. On the basis of our results, the disturbance effects in the studied area might be caused by both local streams and Po plume, and even if the latter might be considered of lesser extent, it is worthy to note its real impact at a short distance from the coastline. Meiobenthic assemblage structure appears as a good tool for detecting short-term responses of the benthic domain, whereas nematode assemblages seem more useful for defining long-term responses. Accordingly, the former highlighted from poor to sufficient ecological quality status (EQS) of this area, whereas the latter from moderate to bad EQS. Life strategy traits prove to be the most informative faunal descriptor due to their high correspondence with the environmental variables and particularly with this type of disturbance.


Meiofauna Nematodes Water Framework Directive Bioindicators Water quality Po river plume 


  1. Alves, A. S., Adão, H., Ferrero, T. J., Marques, J. C., Costa, M. J., & Patrício, J. (2013). Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecological Indicators, 24, 462–475.CrossRefGoogle Scholar
  2. Ansari, K. G. M. T., Lyla, P. S., Ajmal Khan, S., Manokaran, S., & Raja, S. (2013). Community structure of harpacticoid copepods from the southeast continental shelf of India. Proceedings of the International Academy of Ecology and Environmental Sciences, 3, 87–100.Google Scholar
  3. Armenteros, M., Ruiz-Abierno, A., Fernández-Garcés, R., Pérez-García, J. A., Díaz- Asencio, L., Vincx, M., & Decraemer, W. (2009). Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine Coastal Shelf Science, 85, 179–189.CrossRefGoogle Scholar
  4. Armenteros, M., Pérez-García, J. A., Ruiz-Abierno, A., Díaz-Asencio, L., Helguera, Y., Vincx, M., & Decraemer, W. (2010). Effects of organic enrichment on nematode assemblages in a microcosm experiment. Marine Environmental Research, 70, 374–382.CrossRefGoogle Scholar
  5. Armynot du Châtelet, E., Bout-Roumazeilles, V., Coccioni, R., Frontalini, F., Guillot, F., Kaminski, M. A., Recourt, P., Riboulleau, A., Trentesaux, A., Tribovillard, N., & Ventalon, S. (2013). Environmental control on shell structure and composition of agglutinated foraminifera along a proximal–distal transect in the Marmara Sea. Marine Geology, 335, 114–128.CrossRefGoogle Scholar
  6. Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., & Russo, A. (1997). The Adriatic Sea general circulation, part I: baroclinic circulation structure. Journal of Physical Oceanography, 27, 1515–1532.CrossRefGoogle Scholar
  7. Balsamo, M., Albertelli, G., Ceccherelli, V. U., Coccioni, R., Colangelo, M. A., Curini-Galletti, M., Danovaro, R., D’Addabbo, R., Leonardis, C., Fabiano, M., Frontalini, F., Gallo, M., Gambi, C., Guidi, L., Moreno, M., Pusceddu, A., Sandulli, R., Semprucci, F., Todaro, M. A., & Tongiorgi, P. (2010). Meiofauna of the Adriatic Sea: current state of knowledge and future perspectives. Chemistry and Ecology, 26, 45–63.CrossRefGoogle Scholar
  8. Balsamo, M., Semprucci, F., Frontalini, F., & Coccioni, R. (2012). Meiofauna as a tool for marine ecosystem biomonitoring. In A. Cruzado (Ed.), Marine ecosystems (pp. 77–104). Rijeka: InTech.Google Scholar
  9. Beyrem, H., Boufahja, F., Hedfi, A., Essid, N., Aïssa, P., & Mahmoudi, E. (2011). Laboratory study on individual and combined effects of cobalt- and zinc-spiked sediment on meiobenthic nematodes. Biological Trace Elements Research, 144, 790–803.CrossRefGoogle Scholar
  10. Bongers, T., & Van de Haar, J. (1990). On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: an example from the river Rhine. Hydrobiology Bulletin, 24, 37–45.CrossRefGoogle Scholar
  11. Bongers, T., Alkemade, R., & Yeates, G. W. (1991). Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Marine Ecology Progress Series, 76, 135–142.CrossRefGoogle Scholar
  12. Borja, A., & Dauer, D. M. (2008). Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecological Indicators, 8, 331–337.CrossRefGoogle Scholar
  13. Borja, Á., Franco, J., & Pérez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 12, 1100–1114.CrossRefGoogle Scholar
  14. Boucher, G. (1980). Facteurs d’equilibre d’un peuplement de nematodes libres des sables sublittoraux. Mémoires du .... Museum national d’Histoire Naturelle, Paris, 114, 1–81.Google Scholar
  15. Bout-Roumazeilles, V., Combourieu-Nebout, N., Desprat, S., Siani, G., Turon, J.-L., & Essallami, L. (2013). Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean. Climate of the Past Discussions, 9, 1065–1087.CrossRefGoogle Scholar
  16. Carriço, R., Zeppilli, D., Quillien, N., & Grall, J. (2013). Can meiofauna be a good biological indicator of the impacts of eutrophication caused by green macroalgal blooms? An Ado Les Cahiers Naturalistes De l’Observatoire Marin, 2, 9–16.Google Scholar
  17. Chamley, H. (1989). Clay sedimentology. Berlin: Springer.CrossRefGoogle Scholar
  18. Clarke, K. R., & Gorley, R. N. (2001). Primer version 5. Plymouth: Primer-E.Google Scholar
  19. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd ed.). Plymouth: Primer-E.Google Scholar
  20. Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Goring, S., Dormoy, I., Joannin, S., Sadori, L., Siani, G., & Magny, M. (2013). Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea). Climate of the Past Discussions, 9, 1669–2014.CrossRefGoogle Scholar
  21. Coull, B. C., & Chandler, G. T. (1992). Pollution and meiofauna: field, laboratory and mesocosm studies. Oceanography and Marine Biology: An Annual Review, 30, 191–271.Google Scholar
  22. Danovaro, R., Fabiano, M., & Vincx, M. (1995). Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Marine Pollution Bulletin, 30, 133–145.CrossRefGoogle Scholar
  23. Danovaro, R., Gambi, C., Manini, E., & Fabiano, M. (2000). Meiofauna response to a dynamic river plume front. Marine Biology, 137, 359–370.CrossRefGoogle Scholar
  24. Danovaro, R., Gambi, C., Mirto, S., Sandulli, R., Ceccherelli, V.U. (2004). Meiofauna. In Mediterranean marine benthos: a manual of methods for its sampling and study. In M.C. Gambi, M. Dappiano (Eds), Biologia Marina Mediterranea, 11, 55–97.Google Scholar
  25. Esquevin, J. (1969). Influence de la composition chimique des argiles sur la cristallinité. Bulletin du Centre de Recherches de Pau -S.N.P.A, 3, 147–154.Google Scholar
  26. Fabbrocini, A., Guarino, A., & Scirocco, T. (2005). Integrated biomonitoring assessment of the Lesina Lagoon (Southern Adriatic Coast, Italy): preliminary results. Chemistry and Ecology, 21, 479–489.CrossRefGoogle Scholar
  27. Franco, P., Jeftic, L., Malanotte Rizzoli, P., Michelato, A., & Orlic, M. (1982). Descriptive model of the northern Adriatic. Oceanologica Acta, 5, 379–389.Google Scholar
  28. Fraschetti, S., Gambi, C., Giangrande, A., Musco, L., Terlizzi, A., & Danovaro, R. (2006). Structural and functional response of meiofauna rocky assemblages to sewage pollution. Marine Pollution Bulletin, 52, 540–548.CrossRefGoogle Scholar
  29. Frignani, M., Langone, L., Pacelli, M., & Ravaioli, M. (1992). Input, distribution and accumulation of dolomite in sediments of the Middle Adriatic Sea. Rapport Commission International Mer Mediterranée, 33, 324.Google Scholar
  30. Frontalini, F., Semprucci, F., Coccioni, R., Balsamo, M., Bittoni, P., & Covazzi-Harriague, A. (2011). On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environmental Monitoring and Assessment, 180, 325–344.CrossRefGoogle Scholar
  31. Gallucci, F., Steyaert, M., & Moens, T. (2005). Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Marine Ecology Progress Series, 304, 167–178.CrossRefGoogle Scholar
  32. Gaudiano, A., Pizzagalli, C., Reggiani, M.C., Banini, L., Grassini, P. (1994). Valutazione dello stato di inquinamento del fiume Foglia mediante l’uso di indicatori biologici. Amministrazione di Pesaro e Urbino. Fano.Google Scholar
  33. Gómez Noguera, G., & Hendrickx, M. E. (1997). Distribution and abundance of meiofauna in a subtropical coastal lagoon in the south-eastern Gulf of California. Marine Pollution Bulletin, 34, 582–587.CrossRefGoogle Scholar
  34. Gyedu-Ababio, T. K., & Baird, D. (2006). Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety, 63, 443–450.CrossRefGoogle Scholar
  35. Gyedu-Ababio, T. K., Furstenberg, J. P., Baird, D., & Vanreusel, A. (1999). Nematodes as indicators of pollution: a case study from the Swartkops river system, South Africa. Hydrobiologia, 397, 155–169.CrossRefGoogle Scholar
  36. Hedfi, A., Mahmoudi, E., Boufahja, F., Beyrem, H., & Aïssa, P. (2007). Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bulletin of Environmental Contaminant and Toxicology, 79, 345–349.CrossRefGoogle Scholar
  37. Heip, C., Vincx, M., & Vranken, G. (1985). The ecology of marine nematodes. Oceanography and Marine Biology: An Annual Review, 23, 399–489.Google Scholar
  38. Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41, 221–234.CrossRefGoogle Scholar
  39. Kennedy, A. D., & Jacoby, C. A. (1999). Biological indicators of marine environmental health: meiofauna a neglected benthic component? Environmental Monitoring and Assessment, 54, 47–68.CrossRefGoogle Scholar
  40. Lee, M. R., Correa, J. A., & Castilla, J. C. (2001). An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chañaral case. Marine Pollution Bulletin, 42, 696–701.CrossRefGoogle Scholar
  41. Loizeau, J.-L., Arbouille, D., Santiago, S., & Vernet, J.-P. (1994). Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology, 41, 353–361.CrossRefGoogle Scholar
  42. Losi, V., Ferrero, T. J., Moreno, M., Gaozza, L., Rovere, A., Firpo, M., Marques, J. C., & Albertelli, G. (2013). The use of nematodes in assessing ecological conditions in shallow waters surrounding a Mediterranean harbour facility. Estuarine, Coastal and Shelf Science, 130, 1–13.CrossRefGoogle Scholar
  43. Mahmoudi, E., Essid, E., Beyrem, H., Hedfi, A., Boufahja, F., Vitiello, P., & Aïssa, P. (2007). Individual and combined effects of lead and zinc of a free living marine nematode community: results from microcosm experiments. Journal of Experimental Marine Biology and Ecology, 343, 217–226.CrossRefGoogle Scholar
  44. Marin, V., Moreno, M., Vassalo, P., Vezzuli, L., & Fabiano, M. (2008). Development of a multistep indicator-based approach (MIBA) for the assessment of environmental quality of harbours. ICES Journal of Marine Science, 65, 1436–1441.CrossRefGoogle Scholar
  45. Martens, P. M., & Schockaert, E. R. (1986). The importance of turbellarians in the marine meiobenthos: a review. Hydrobiologia, 132, 295–303.CrossRefGoogle Scholar
  46. McIntyre, A. D., & Warwick, R. M. (1984). Meiofauna techniques. In N. A. Holme & A. D. McIntyre (Eds.), Methods for the study of marine benthos (pp. 217–244). Oxford: Blackwell.Google Scholar
  47. McLachlan, A., & Brown, A. C. (2006). The ecology of sandy shores. Burlington: Academic.Google Scholar
  48. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100, 525–544.CrossRefGoogle Scholar
  49. Millward, R. N., & Grant, A. (1995). Assessing the impact of copper on nematode communities from a chronically metal enriched estuary using pollution-induced community tolerance. Marine Pollution Bulletin, 30, 701–706.CrossRefGoogle Scholar
  50. Moens, T., & Vincx, M. (1997). Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the UK, 77, 211–227.CrossRefGoogle Scholar
  51. Moens, T., Dos Santos, G. A. P., Thompson, F., Swings, J., Fonseca-Genevois, V., Vincx, M., & De Mesel, I. (2005). Do nematode mucus secretions affect bacterial growth? Aquatic Microbial Ecology, 40, 77–83.CrossRefGoogle Scholar
  52. Moreno, M., Ferrero, T. J., Gallizia, I., Vezzulli, L., Albertelli, G., & Fabiano, M. (2008). An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science, 77, 565–576.CrossRefGoogle Scholar
  53. Moreno, M., Albertelli, G., & Fabiano, M. (2009). Nematode response to metal, PAHs and organic enrichment in tourist marinas of the Mediterranean Sea. Marine Pollution Bulletin, 58, 1192–1201.CrossRefGoogle Scholar
  54. Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M., & Albertelli, G. (2011). The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators, 11, 328–336.CrossRefGoogle Scholar
  55. Mosci, D., Pierboni, L., Valentini, A., Ceccarini, M., & Balsamo, M. (2002). Osservazioni preliminari sul meiozoobenthos del Parco Naturale del Monte San Bartolo (Pesaro). Biologia Marina Mediterranea, 9, 629–631.Google Scholar
  56. Penna, N., Cappellacci, S., & Ricci, F. (2004). The influence of the Po River discharge on phytoplankton bloom dynamics along the coastline of Pesaro (Italy) in the Adriatic Sea. Marine Pollution Bulletin, 48, 321–326.CrossRefGoogle Scholar
  57. Petschick, R. (2001). MacDiff v4.2.5 (Free Geological Software), Geologisch-Palaontologisches Institut, Universitat Frankfurt/Main.available at: Accessed 2 Jul 2012.
  58. Platt, H. M., & Warwick, R. M. (1980). The significance of free-living nematodes to the littoral ecosystem. In J. H. Price, D. E. G. Irvine, & W. F. Farnham (Eds.), The shore environment: ecosystems. Vol. 2 (pp. 729–759). New York: Academic.Google Scholar
  59. Platt, H.M., & Warwick, R.M. (1983). Free-living marine nematodes. Part I. British Enoplids. Synopses of the British fauna (new series) Vol. 28. Cambridge Univ. Press, Cambridge.Google Scholar
  60. Platt, H.M. & Warwick, R.M. (1988). Free-living marine nematodes. Part II. British chromadorids. Synopses of the British fauna (new series). Vol. 38. Brill, Leiden.Google Scholar
  61. Sandulli, R., & De Nicola-Giudici, M. (1990). Pollution effects on the structure of meiofaunal communities in the Bay of Naples. Marine Pollution Bulletin, 21, 144–153.CrossRefGoogle Scholar
  62. Sandulli, R., & De Nicola-Giudici, M. (1991). Responses of meiobenthic communities along a gradient of sewage pollution. Marine Pollution Bulletin, 22, 463–467.CrossRefGoogle Scholar
  63. Schratzberger, M., & Warwick, R. M. (1998). Effects of the intensity and frequency of organic enrichment on two estuarine nematode communities. Marine Ecology Progress Series, 164, 83–94.CrossRefGoogle Scholar
  64. Schratzberger, M., Bolam, S., Whomersley, P., & Warr, K. (2006). Differential response of nematode colonist communities to the intertidal placement of dredged material. Journal of Experimental Marine Biology and Ecology, 334, 244–255.CrossRefGoogle Scholar
  65. Schratzberger, M., Forster, R. M., Goodsir, F., & Jennings, S. (2008). Nematode community dynamics over an annual production cycle in the central North Sea. Marine Environmental Research, 66, 508–519.CrossRefGoogle Scholar
  66. Seinhorst, W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica, 4, 67–69.CrossRefGoogle Scholar
  67. Semprucci, F. (2013). Marine nematodes from the shallow subtidal coast of the Adriatic Sea: species list and distribution. International Journal of Biodiversity, 1, 1–9.CrossRefGoogle Scholar
  68. Semprucci, F., & Balsamo, M. (2012). Key role of free-living nematodes in the marine ecosystem. In F. Boeri & A. C. Jordan (Eds.), Nematodes: morphology, functions and management strategies (pp. 109–34). Hauppauge: NOVA Science.Google Scholar
  69. Semprucci, F., Boi, P., Manti, A., Covazzi Harriague, A., Rocchi, M., Colantoni, P., Papa, S., & Balsamo, M. (2010). Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgoland Marine Research, 64, 101–115.CrossRefGoogle Scholar
  70. Semprucci, F., Frontalini, F., Covazzi-Harriague, A., Coccioni, R., & Balsamo, M. (2013a). Meio- and macrofauna in the marine area of the Monte St. Bartolo Natural Park (Central Adriatic Sea, Italy). Scientia Marina, 77, 189–199.CrossRefGoogle Scholar
  71. Semprucci, F., Moreno, M., Sbrocca, S., Rocchi, M., Albertelli, G., & Balsamo, M. (2013b). The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea. Mediterranean Marine Science, 14, 48–57.CrossRefGoogle Scholar
  72. Semprucci, F., Balsamo, M., & Frontalini, F. (2014a). The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity patterns. Scientia Marina, 78, 579–588.CrossRefGoogle Scholar
  73. Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G., & Balsamo, M. (2014b). Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). Journal of Marine Biological Association of the United Kingdom, 94, 1377–1385.CrossRefGoogle Scholar
  74. Simboura, N., & Zenetos, A. (2002). Benthic indicators to use in ecological quality classification of Mediterranean soft bottoms marine ecosystems, including a new biotic index. Mediterranean Marine Science, 3, 77–111.CrossRefGoogle Scholar
  75. Somerfield, P. J., Gee, J. M., & Warwick, R. M. (1994). Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Marine Ecology Progress Series, 105, 79–88.CrossRefGoogle Scholar
  76. Sorgente, D. (1999). Studio della sedimentazione attuale e recente nel medio Adriatico attraverso l’uso di traccianti redioattivi. Ph.D. thesis, University of Bologna.Google Scholar
  77. Steyaert, M., Garner, N., Gansbeke, D., & Vincx, M. (1999). Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. Journal of Marine Biological Association of the United Kingdom, 79, 253–264.CrossRefGoogle Scholar
  78. Sundelin, B., & Elmgren, R. (1991). Meiofauna of an experimental soft bottom ecosystem—effects of macrofauna and cadmium exposure. Marine Ecology Progress Series, 70, 245–255.CrossRefGoogle Scholar
  79. Tomadin, L. (2000). Sedimentary fluxed and different dispersion mechanism of the clay sediments in the Adriatic Basin. Rendiconti Lincei: Scienze Fisiche e Naturalia, 9, 161–174.CrossRefGoogle Scholar
  80. Travizi, A., & Vidakovic, J. (1997). Nematofauna in the Adriatic Sea: review and check-list of free-living nematode species. Helgolaender Meeresuntersuchungen, 51, 503–519.CrossRefGoogle Scholar
  81. Trentesaux, A., Recourt, P., Bout‐Roumazeilles, V., & Tribovillard, N. (2001). Carbonate grain‐size distribution in hemipelagic sediments from a laser particle sizer. International Journal of Sediment Research, 71, 858–862.CrossRefGoogle Scholar
  82. Van Colen, C., Montserrat, F., Verbist, K., Vincx, M., Steyaert, M., Vanaverbeke, J., Herman, P. M. J., Degraer, S., & Ysebaert, T. (2009). Tidal flat nematode response to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Marine Ecology Progress Series, 381, 189–197.CrossRefGoogle Scholar
  83. Van Gaever, S., Olu, K., Derycke, S., & Vanreusel, A. (2009). Metazoan meiofaunal communities at cold seeps along the Norwegian margin: influence of habitat heterogeneity and evidence for connection with shallow-water habitats. Deep-Sea Research I, 56, 772–785.CrossRefGoogle Scholar
  84. Van Hoey, G., Borja, A., Birchenough, S., Buhl-Mortensen, L., Degraer, S., Fleischer, D., Kerckhof, F., Magni, P., Muxika, I., Reiss, H., Schroder, A., & Zettler, M. L. (2010). The use of benthic indicators in Europe: from the Water Framework Directive to the Marine Strategy Framework Directive. Marine Pollution Bulletin, 60, 2187–2196.CrossRefGoogle Scholar
  85. Vanaverbeke, J., Merckx, B., Degraer, S., & Vincx, M. (2011). Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin? Marine Environmental Research, 71, 31–40.CrossRefGoogle Scholar
  86. Vanaverbeke, J., Bezerra, T.N., Braeckman, U., De Groote, A., De Meester, N., Deprez, T., Derycke, S., Gilarte, P., Guilini, K., Hauquier, F., Lins, L., Maria, T., Moens, T., Pape, E., Smol, N., Taheri, M., Van Campenhout, J., Vanreusel, A., Wu, X., Vincx, M. (2015). NeMys: world database of free-living marine nematodes. Accessed 12 Mar 2015.
  87. Warwick, R.M., Platt, H.M., Somerfield, P.J. (1998). Free-living marine nematodes. Part III. British monhysterids. Synopses of the British fauna (new series), Vol. 53. E J Brill/Dr W Backhuys, Leiden. Field Studies Council, Shrewsbury, UK.Google Scholar
  88. Widbom, B., & Elmgren, R. (1988). Response of benthic meiofauna to nutrient enrichment of experimental marine ecosystems. Marine Ecology Progress Series, 42, 257–268.CrossRefGoogle Scholar
  89. Wieser, W. (1953). Die beziehung zwischen mundhöhlengestalt, ernährungsweise und vorkommen bei freilebenden marinen nematoden. Eine ökologisch-morphologische studie. Arkiv for Zoologica, 4, 439–484.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Semprucci
    • 1
    Email author
  • F. Frontalini
    • 1
  • C. Sbrocca
    • 1
  • E. Armynot du Châtelet
    • 2
  • V. Bout-Roumazeilles
    • 2
  • R. Coccioni
    • 1
  • M. Balsamo
    • 1
  1. 1.Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA)Università degli Studi di Urbino ‘Carlo Bo’UrbinoItaly
  2. 2.UMR 8217 CNRS GéosystèmesUniversité Lille 1Villeneuve d’AscqFrance

Personalised recommendations