Advertisement

Temporal distribution of air quality related to meteorology and road traffic in Madrid

  • Pedro J. Perez-MartinezEmail author
  • Regina M. Miranda
Article

Abstract

The impact of climatology—air temperature, precipitation and wind speed—and road traffic—volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)—on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3 % (95 % CI 12.6–8.6) for all weekdays and by 12.4 % (95 % CI 14.9–9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2 % (95 % CI 6.2–8.3)) and traffic volume (3.3 % (95 % CI 2.9–3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2 % (95 % CI 2.7–3.7)) and vehicle speed (0.7 % (95 % CI 0.6–0.8)) were observed at every 1 % and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

Keywords

Air pollution modeling Road traffic Climatology Spain 

Notes

Acknowledgments

This study was supported by the European Research Council (Grant 246565) in the framework of the Marie Curie UNITE project and through the program for contracting experienced researchers for scientific and technological research (COFUND, Seventh Framework). Thanks to the Municipality of Madrid for providing air quality and road traffic data.

References

  1. Akaike, H. (1974). A new look at statistical model identification. IEEE T Automatic Control, 9, 716–722.CrossRefGoogle Scholar
  2. Andrade, M., Orsini, C., & Maenhaut, W. (1994). Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil. Atmospheric Environment, 28(14), 2307–2315.CrossRefGoogle Scholar
  3. Andrade, M. F., Fornaro, A., Miranda, R. M., Kerr, A., Oyama, B., Andre, P. A., & Saldiva, P. (2012). Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5(1), 79–85.CrossRefGoogle Scholar
  4. André, P. A., Matera, A., Miraglia, S., & Saldiva, P. (2012). Lean diesel technology and human health: a case study in six Brazilian metropolitn regions. Clinics, 67(6), 639–645.CrossRefGoogle Scholar
  5. Artíñano, B., Salvador, P., Alonso, D. G., Querol, X., & Alastuey, A. (2004). Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). The Science of the Total Environment, 334-335, 111–123.CrossRefGoogle Scholar
  6. Bapna, M., Raman, R. S., Ramachandran, S., & Rajesh, T. A. (2013). Airborne black carbon concentrations over an urban region in western India—temporal variability, effects of meteorology, and source regions. Environmental Science and Pollution Research, 20, 1617–1631.CrossRefGoogle Scholar
  7. Borge, R., Lumbreras, J., & Rodríguez, E. (2008). Development of a high-resolution emission inventory for Spain using the SMOKE modelling system: a case study for the years 2000 and 2010. Environmental Modelling & Software, 23(4), 1026–1044.Google Scholar
  8. Box, G., Jenkins, G. M., & Reinsel, C. (1994). Time series analyses, forecasting and control. Englewood Cliffs: Prentice Hall.Google Scholar
  9. Burgard, D. A., Bishop, G. A., & Stedman, D. H. (2006). Remote sensing of in-use heavy duty diesel trucks. Environmental Science & Technology, 40, 6938–6942.CrossRefGoogle Scholar
  10. Chirico, R., Prevot, A., De Carlo, P. F., Heringa, M. F., Richter, R., Weingartner, E., & Baltensperger, U. (2011). Aerosol and trace gas vehicle emission factors measured in a tunnel using an aerosol mass spectrometer and other on-line instrumentation. Atmospheric Environment, 45, 2182–2192.CrossRefGoogle Scholar
  11. Cogliani, E. (2001). Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35, 2871–2877.CrossRefGoogle Scholar
  12. da Silva, C., Saldiva, P., Amato-Lourenço, L., Rodrigues-Silva, F., & Miraglia, S. (2012). Journal of Environmental Management 101, 191–196. Brazil: Evaluation of the air quality benefits of the subway system in São Paulo.Google Scholar
  13. Droprinchinski-Martins, L., Martins, J., Diaz-Freitas, E., Mazzoli, C., Goncalves, F., & Ynoue, R. (2010). Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: a model-based study. Air Qual Atmos Health, 3(14), 29–39.CrossRefGoogle Scholar
  14. EDM. (2006). Mobility survey of Madrid, Summary document 2004. Madrid: Transport Authority of Madrid.Google Scholar
  15. EEA. (2013). Air Quality in Europe. 2012 Report. European Environmental Agency: Copenhagen.Google Scholar
  16. EMT. (2006). Annual report. Madrid: Transport Municipal Company of Madrid.Google Scholar
  17. EPTMC. (2010). Road Freight Transport Permanent Survey. Madrid: Ministry of Public Works.Google Scholar
  18. Freitas, S., Longo, K., & Rodrigues, L. (2009). Modelagem numérica da composiçao química da atmosfera e seus impactos no tempo, clima e qualidade do ar. Revista Brasileira de Meteorologia, 24(2), 188–207.CrossRefGoogle Scholar
  19. Gallardo, L., Escribano, G., Dawidowski, L., Rojas, N., Andrade, M., & Osses, M. (2012). Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmospheric Environment, 47, 12–19.CrossRefGoogle Scholar
  20. Gasmi, T., & González-Ureña, A. (2002). CO2-TEA, mid-infrared, laser-based dial system: featuring ozone dynamics during a “vehicle free” day. Instrumentation Science and Technology, 30(4), 427–438.CrossRefGoogle Scholar
  21. Gokhale, S. (2011). Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality. Atmospheric Environment, 45, 1830–1840.CrossRefGoogle Scholar
  22. Guaita, R., Pichiule, M., Maté, T., Linares, C., & Díaz, J. (2011). Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. International Journal of Environmental Health Research, 21(4), 260–274.CrossRefGoogle Scholar
  23. Guttikunda, S. K., & Gurjar, B. R. (2012). Role of meteorology in seasonality of air pollution in megacity Delhi, India. Atmospheric Environment, 184, 3199–3211.Google Scholar
  24. Hagler, G. S. W., Baldauf, R. W., Thoma, E. D., Long, T. R., Snow, R. F., Kinsey, J. S., Oudejans, L., & Gullett, B. K. (2009). Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmospheric Environment, 43, 1229–1234.CrossRefGoogle Scholar
  25. Harley, R. A., Marr, L. C., Lehner, J. K., & Giddings, S. N. (2005). Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environmental Science & Technology, 39, 5356–5362.CrossRefGoogle Scholar
  26. Hori, A., Hashizume, M., Tsuda, Y., Tsukahara, T., & Nomiyama, T. (2012). Effects of weather variability and air pollutants on energy admissions for cardiovascular and cerebrovascular diseases. International Journal of Environmental Health Research, 22(5), 416–430.CrossRefGoogle Scholar
  27. Imhof, D., Weingartner, E., Ordoñez, C., Gehrig, R., Hill, M., Buchmann, B., & Baltensperger, U. (2005). Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland. Environmental Science & Technology, 39, 8341–8350.CrossRefGoogle Scholar
  28. INFRAS-IWW. (2004). External costs of transport: accidents, environmental and congestion costs of transport in Western Europe. Zurich Karlsruhe: University of Karlsruhe.Google Scholar
  29. Jiménez, E., Linares, C., Martínez, D., & Díaz, J. (2011). Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences. International Journal of Environmental Health Research, 21(5), 372–390.CrossRefGoogle Scholar
  30. Kuznetsova, I. N. (2012). The effect of meteorology on air pollution in Moscow during the summer episodes of 2010. Atmospheric and Oceanic Physics, 48(5), 504–515.CrossRefGoogle Scholar
  31. Linares, C., & Díaz, J. (2010). Short-term effect of PM2.5 on daily hospital admissions in Madrid (2003-2005). International Journal of Environmental Health Research, 20(2), 129–140.CrossRefGoogle Scholar
  32. Marcelo, F. A., Longo, K., Freitas, S., Mello da Fonseca, R., Marécal, V., & Pirre, M. (2010). An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmospheric Environment, 44, 5072–5083.CrossRefGoogle Scholar
  33. Monzón, A., & Guerrero, M. J. (2004). Valuation of social and health effects of transport-related air pollution in Madrid (Spain). The Science of the Total Environment, 334–335, 427–434.CrossRefGoogle Scholar
  34. Monzón, A., Moragues, A., & Acha, C. (1999). Seasonal analysis of air pollution in Madrid. The Science of the Total Environment, 235, 343–345.CrossRefGoogle Scholar
  35. Moragues, A., & Alcaide, T. (1996). The use of a geographical information system to assess the effect of traffic pollution. The Science of the Total Environment, 189–190, 267–273.CrossRefGoogle Scholar
  36. Municipality of Madrid. (2009). Emission inventory of green house gases in the city of Madrid. Environment division.Google Scholar
  37. Municipality of Madrid. (2010). Local strategy of air quality in the city of Madrid. Environment, security and mobility division.Google Scholar
  38. Municipality of Madrid. (2012). Air quality plan of the city of Madrid 2011-2015. Environment, security and mobility division.Google Scholar
  39. Municipality of Madrid. (2013). Map of traffic intensity and vehicle-speed of Madrid. Environment, security and mobility division.Google Scholar
  40. Ntziachristos, L., Zhi, N., Geller, M. D., & Sioutas, C. (2007). Particle concentration and characteristics near a major freeway with heavy-duty diesel traffic. Environmental Science & Technology, 41, 2223–2230.CrossRefGoogle Scholar
  41. Pérez-Martínez, P. J. (2012). Energy consumption and emissions form the road transport in Spain: a conceptual approach. Transport Vilnus, 27(4), 383–396.CrossRefGoogle Scholar
  42. Perez-Martinez, P. J., & Vassallo, J. M. (2013). Changes in the external costs of freight surface transport in Spain. Research in Transportation Economics, 42(1), 61–76.CrossRefGoogle Scholar
  43. Quinet, E. (2004). A meta-analysis of Western European external costs estimates. Transportation Research D, 9, 465–476.CrossRefGoogle Scholar
  44. Rodrigues, F., Santos, U., Saldiva, P., Amato, L., & Miraglia, S. (2012). The risk and economic estimation of absenteeism due to air pollution in São Paulo, Brazil. Aerosol and Air Quality Research, 12, 826–833.Google Scholar
  45. Sanchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., Astolfo, R., Miranda, R. M., Freitas, E. D., Borges, A. S., Fornaro, A., Freitas, H., Moreira, A., & Andrade, M. F. (2009). Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environmental Monitoring and Assessment, 149(1–4), 241–249.CrossRefGoogle Scholar
  46. Seigneur, C., Pun, B., Lohman, K., & Wu, S. Y. (2003). Regional modelling of the atmospheric fate and transport of benzene and diesel particles. Environmental Science & Technology, 22, 5236–5246.CrossRefGoogle Scholar
  47. Seinfeld, J., & Pandis, S. (1998). Atmospheric chemistry and physics: from air pollution to climate change. NY: Wiley.Google Scholar
  48. Sun, C., Zheng, S., & Wang, R. (2014). Restricting driving for better traffic and clearer skies: did it work in Beijing. Transport Policy, 32, 34–41.CrossRefGoogle Scholar
  49. Wang, X., Westerdahl, D., Hu, J., Wu, Y., Yin, H., Pan, X., & Zhang, K. M. (2012). On road diesel vehicle emission factors for nitrogen oxides and black carbon in two Chinese cities. Atmospheric Environment, 46, 45–55.CrossRefGoogle Scholar
  50. Yang, L., Wu, Y., Davis, J. M., & Hao, J. (2011). Estimating the effects of meteorology on PM2.5 reduction during the Summer Olympic Games in Beijing, China. Frontiers of Environmental Science & Engineering in China, 5(3), 331–341.CrossRefGoogle Scholar
  51. Zhang, R., Ho, K., & Shen, Z. (2012). The role of aerosol in climate change, the environment, and human health. Atmospheric and oceanic science letters, 5(2), 156–161.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ETSIM-Grupo en Economía Sostenible del Medio Natural (ECSEN)Universidad Politécnica de MadridMadridSpain
  2. 2.Escuela de Artes, Ciencias y Humanidades (EACH)Universidad de São Paulo (USP)São PauloBrazil

Personalised recommendations