The effects of a remediated fly ash spill and weather conditions on reproductive success and offspring development in tree swallows

  • Michelle L. Beck
  • William A. Hopkins
  • Brian P. Jackson
  • Dana M. Hawley
Article

Abstract

Animals are exposed to natural and anthropogenic stressors during reproduction that may individually or interactively influence reproductive success and offspring development. We examined the effects of weather conditions, exposure to element contamination from a recently remediated fly ash spill, and the interaction between these factors on reproductive success and growth of tree swallows (Tachycineta bicolor) across nine colonies. Females breeding in colonies impacted by the spill transferred greater concentrations of mercury (Hg), selenium (Se), strontium, and thallium to their eggs than females in reference colonies. Parental provisioning of emerging aquatic insects resulted in greater blood Se concentrations in nestlings in impacted colonies compared to reference colonies, and these concentrations remained stable across 2 years. Egg and blood element concentrations were unrelated to reproductive success or nestling condition. Greater rainfall and higher ambient temperatures during incubation were later associated with longer wing lengths in nestlings, particularly in 2011. Higher ambient temperatures and greater Se exposure posthatch were associated with longer wing lengths in 2011 while in 2012, blood Se concentrations were positively related to wing length irrespective of temperature. We found that unseasonably cold weather was associated with reduced hatching and fledging success among all colonies, but there was no interactive effect between element exposure and inclement weather. Given that blood Se concentrations in some nestlings exceeded the lower threshold of concern, and concentrations of Se in blood and Hg in eggs are not yet declining, future studies should continue to monitor exposure and effects on insectivorous wildlife in the area.

Keywords

Element Interactive effects Nestling growth Reproductive success Tree swallow Weather 

Notes

Acknowledgments

We thank John Hallagan, Matt Hepp, Dean Sedgewick, Mark Hepner, Elizabeth Burton, Jesse Morris, Darin Blood, Juan Botero, Angela Garica, Brittney Coe, Ashley Love, Steve Munoz, Ben Nickely, Elizabeth Smith, and Lisa Trapp for assistance in the field and Jean Favara, Suzie Walls, Wes James, Neil Carriker, and the USDA APHIS Knoxville for providing logistical support. We thank David Hankins for assisting with the maps. Funding for this project was provided by Tennessee Valley Authority grant to WAH and DMH.

Supplementary material

10661_2015_4333_MOESM1_ESM.doc (42 kb)
Supplementary Table 1 (DOC 41 kb)
10661_2015_4333_MOESM2_ESM.doc (47 kb)
Supplementary Table 2 (DOC 47 kb)
10661_2015_4333_MOESM3_ESM.docx (18 kb)
Supplementary Table 3 (DOCX 18 kb)
10661_2015_4333_MOESM4_ESM.docx (19 kb)
Supplementary Table 4 (DOCX 19 kb)
10661_2015_4333_MOESM5_ESM.docx (23 kb)
Supplementary Table 5 (DOCX 23 kb)
10661_2015_4333_MOESM6_ESM.docx (25 kb)
Supplementary Table 6 (DOCX 24 kb)
10661_2015_4333_MOESM7_ESM.docx (23 kb)
Supplementary Table 7 (DOCX 22 kb)
10661_2015_4333_MOESM8_ESM.docx (21 kb)
Supplementary Table 8 (DOCX 21 kb)
10661_2015_4333_MOESM9_ESM.docx (25 kb)
Supplementary Table 9 (DOCX 25 kb)
10661_2015_4333_MOESM10_ESM.docx (26 kb)
Supplementary Table 10 (DOCX 25 kb)
10661_2015_4333_MOESM11_ESM.docx (21 kb)
Supplementary Table 11 (DOCX 20 kb)
10661_2015_4333_MOESM12_ESM.docx (22 kb)
Supplementary Table 12 (DOCX 22 kb)
10661_2015_4333_MOESM13_ESM.docx (22 kb)
Supplementary Table 13 (DOCX 22 kb)

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In P. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
  2. Anderson, D. R. (2008). Model based inference in the life sciences. New York: Springer.Google Scholar
  3. ARCADIS. (2011). Draft trace element concentrations in tree swallows: 2009-2010. Kingston: Tennessee Valley Authority.Google Scholar
  4. Ardia, D. R. (2005). Super size me: an experimental test of the factors affecting lipid content and the ability of residual body mass to predict lipid stores in nestling European Starlings. Functional Ecology, 19(3), 414–420.CrossRefGoogle Scholar
  5. Baos, R., Jovani, R., Serrano, D., Tella, J. L., & Hiraldo, F. (2012). Developmental exposure to a toxic spill compromises long-term reproductive performance in a wild, long-lived bird: the white stork (Ciconia ciconia). PLoS ONE, 7(4), e34716. doi: 10.1371/journal.pone.0034716.CrossRefGoogle Scholar
  6. Barrett, M. A., Brown, J. L., Junge, R. E., & Yoder, A. D. (2013). Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biological Conservation, 157(1), 409–422.CrossRefGoogle Scholar
  7. Beck, M. L., Hopkins, W. A., & Jackson, B. P. (2013). Spatial and temporal variation in the diet of tree swallows: implications for trace element exposure following habitat remediation. Archives of Environmental Contamination and Toxicology, 65(3), 575–587.CrossRefGoogle Scholar
  8. Beck, M. L., Hopkins, W. A., & Jackson, B. P. (2014). Variation in riparian consumer diet composition and differential bioaccumulation by prey influence the risk of exposure to elements from a recently remediated fly ash spill. Environmental Toxicology and Chemistry, 33(11), 2595–2608.CrossRefGoogle Scholar
  9. Bergeron, C. M., Hopkins, W. A., Todd, B. D., Hepner, M. J., & Unrine, J. M. (2011). Interactive effects of maternal and dietary mercury exposure have latent and lethal consequences for amphibian larvae. Environmental Science & Technology, 45(8), 3781–3787.CrossRefGoogle Scholar
  10. Berglund, A. M. M., Ingvarsson, P. K., Danielsson, H., & Nyholm, N. E. I. (2010). Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden. Environmental Pollution, 158(5), 1368–1375.CrossRefGoogle Scholar
  11. Bitton, P. P., Dawson, R. D., & O'Brien, E. L. (2006). Influence of intraclutch egg-mass variation and hatching asynchrony on relative offspring performance within broods of an altricial bird. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 84(12), 1721–1726.CrossRefGoogle Scholar
  12. Brasso, R. L., Abdel Latif, M. K., & Cristol, D. A. (2010). Relationship between laying sequence and mercury concentration in Tree Swallow eggs. Environmental Toxicology and Chemistry, 29(5), 1155–1159.Google Scholar
  13. Brasso, R. L., & Cristol, D. A. (2008). Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology, 17(2), 133–141.CrossRefGoogle Scholar
  14. Brown, C. R., & Brown, M. B. (1986). Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology, 67(5), 1206–1218.CrossRefGoogle Scholar
  15. Brown, G. P., & Shine, R. (2007). Rain, prey and predators: climatically driven shifts in frog abundance modify reproductive allometry in a tropical snake. Oecologia, 154(2), 361–368.CrossRefGoogle Scholar
  16. Bryan, A. L., Hopkins, W. A., Baionno, J. E., & Jackson, B. P. (2003). Maternal transfer of contaminants to eggs of Common Grackles (Quiscalus quiscala) nesting on coal fly ash basins. Archives of Environmental Contamination and Toxicology, 45(2), 273–277.CrossRefGoogle Scholar
  17. Burger, J. R., & Gochfield, M. (1997). Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environmental Research, 75(2), 160–172.CrossRefGoogle Scholar
  18. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer-Verlag.Google Scholar
  19. Coe, B. H., Beck, M. L., Chin, S. Y., Jachowski, C. M. B., & Hopkins, W. A. (2015). Local variation in climate influences parental care and resultant embryonic developmental conditions in a passerine bird. Journal of Avian Biology. doi: 10.1111/jav.00581.
  20. Cook, R. B., Suter, G. W., & Sain, E. R. (1999). Ecological risk assessment in a large river-reservoir: 1. Introduction and background. Environmental Toxicology and Chemistry, 18(4), 581–588.Google Scholar
  21. Cunningham, S. J., Martin, R. O., Hojem, C. L., & Hockey, P. A. R. (2013). Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: A study of common fiscals. PLoS ONE, 8(9), e74613. doi: 10.1371/journal.pone.0074613.CrossRefGoogle Scholar
  22. Custer, C. A., Custer, T. W., Dummer, P. A., & Munney, K. L. (2003). Exposure and effects of chemical contaminants on tree swallows nesting along the Houatonic River, Berkshire County, Massachusetts, USA 1998-2000. Environmental Toxicology and Chemistry, 22(7), 1605–1621.Google Scholar
  23. Custer, C. M. (2011). Swallows as sentinel species for contaminant exposure and effect studies. In J. Elliott, C. Bishop, & C. Morrissey (Eds.), Wildlife ecotoxicology: Forensic approaches (pp. 45–91). New York: Springer.CrossRefGoogle Scholar
  24. Custer, C. M., Custer, T. W., Warburton, D., Hoffman, D. J., Bickham, J. W., & Matson, C. W. (2006). Trace element concentrations and bioindicator response in tree swallows from northwestern Minnesota. Environmental Monitoring and Assessment, 118(1), 247–266.CrossRefGoogle Scholar
  25. Custer, C. M., Gray, B. R., & Custer, T. W. (2010). Effects of egg order on organic and inorganic element concentrations and egg characteristics in tree swallows, Tachycineta bicolor. Environmental Toxicology and Chemistry, 29(4), 909–921.CrossRefGoogle Scholar
  26. Custer, T. W., Custer, C. A., Johnson, K. M., & Hoffman, D. J. (2008). Mercury and other element exposure to tree swallows (Tachycineta bicolor) nesting on Lostwood National Wildlife Refuge, North Dakota. Environmental Pollution, 155(2), 217–226.CrossRefGoogle Scholar
  27. Dawson, R. D. (2008). Timing of breeding and environmental factors as determinants of reproductive performance of tree swallows. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 86(8), 843–850.CrossRefGoogle Scholar
  28. Dawson, R. D., & Bidwell, M. T. (2005). Dietary calcium limits size and growth of nestling tree swallows in a non-acidified landscape. Journal of Avian Biology, 36(2), 127–134.CrossRefGoogle Scholar
  29. Dawson, R. D., Lawrie, C. C., & O'Brien, E. L. (2005). The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia, 144(3), 499–507.CrossRefGoogle Scholar
  30. Dunn, P. O., & Hannon, S. J. (1992). Effects of food abundance and male parental care on reproductive success and monogamy in tree swallows. Auk, 109(3), 488–499.Google Scholar
  31. Eeva, T., Ahola, M., & Lehikoinen, E. (2009). Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environmental Pollution, 157(11), 3126–3131.CrossRefGoogle Scholar
  32. Eeva, T., & Lehikninen, E. (1995). Egg shell quality, clutch size, and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia, 102(3), 312–323.CrossRefGoogle Scholar
  33. Eeva, T., & Lehikninen, E. (1996). Growth and mortality of nestling great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in a heavy metal pollution gradient. Oecologia, 108(4), 631–639.CrossRefGoogle Scholar
  34. Fischer, B. B., Pomati, F., & Eggen, R. I. L. (2013). The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. Science of the Total Environment, 449, 253–259.CrossRefGoogle Scholar
  35. Franson, J. C., Hoffman, D. J., Wells-Berlin, A., Perry, M. C., Shearn-Bochsler, V., Finley, D. L., et al. (2007). Effects of dietary selenium on tissue concentrations, pathology, oxidative stress, and immune function in common eiders (Somateria mollissima). Journal of Toxicology and Environmental Health Part A, 70(9–10), 861–874.CrossRefGoogle Scholar
  36. Garcia-Barrera, T., Gomez-Ariza, J. L., Gonzalez-Fernandez, M., Moreno, F., Garcia-Sevillano, M. A., & Gomez-Jacinto, V. (2012). Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. Analytical and Bioanalytical Chemistry, 403(8), 2237–2253.CrossRefGoogle Scholar
  37. Gentes, M.-L., Waldner, C., Papp, Z., & Smits, J. E. G. (2006). Effects of oil sands tailings compounds and harsh weather on mortality rates, growth and detoxification efforts in nestling tree swallows (Tachycineta bicolor). Environmental Pollution, 142(1), 24–33.CrossRefGoogle Scholar
  38. Gooderham, K., & Schulte-Hostedde, A. (2011). Macroparasitism influences reproductive success in red squirrels (Tamiasciurus hudsonicus). Behavioral Ecology, 22(6), 1195–1200.CrossRefGoogle Scholar
  39. Gouin, T., Armitage, J. M., Cousins, I. T., Muir, D. C. G., Ng, C. A., Reid, L., et al. (2013). Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models. Environmental Toxicology and Chemistry, 32(1), 20–31.CrossRefGoogle Scholar
  40. Green, A. J. (2001). Mass/length residuals: measures of body condition or generators of spurious results? Ecology, 82(5), 1473–1483.CrossRefGoogle Scholar
  41. Hallinger, K. K., & Cristol, D. A. (2011). The role of weather in mediating the effect of mercury exposure on reproductive success in tree swallows. Ecotoxicology, 20(6), 1368–1377.CrossRefGoogle Scholar
  42. Harding, L. E. (2008). Non-linear uptake and hormesis effects of selenium in red-winged blackbirds (Agelaius phoeniceus). Science of the Total Environment, 389(2–3), 350–366.CrossRefGoogle Scholar
  43. Heinz, G. H. (1996). Selenium in birds. In W. N. Beyer, G. H. Heinz, & A. W. Redmon-Norwood (Eds.), Environmental contaminants in wildlife: Interpreting tissue concentrations (pp. 447–458). Boca Raton: CRC Lewis.Google Scholar
  44. Heinz, G. H., & Fitzgerald, M. A. (1993). Overwinter survival of mallards fed selenium. Archives of Environmental Contamination and Toxicology, 25(1), 90–94.CrossRefGoogle Scholar
  45. Heinz, G. H., & Hoffman, D. J. (2003). Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes. Bulletin of Environmental Contamination and Toxicology, 70(6), 1242–1246.CrossRefGoogle Scholar
  46. Heinz, G. H., Hoffman, D. J., Klimstra, J. D., Stebbins, K. R., Kondrad, S. L., & Erwin, C. A. (2011). Teratogenic effects of injected methylmercury on avian embryos. Environmental Toxicology and Chemistry, 30(7), 1593–1598.CrossRefGoogle Scholar
  47. Hill, E. F., Henny, C. J., & Grove, R. A. (2008). Mercury and drought along the lower Carson River, Nevada: II. Snowy egret and black-crowned night-heron reproduction on Lahontan Reservoir, 1997-2006. Ecotoxicology, 17(2), 117–131.CrossRefGoogle Scholar
  48. Hinam, H. L., & Clair, C. C. S. (2008). High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of Northern saw-whet owls. Biological Conservation, 141(2), 524–535.CrossRefGoogle Scholar
  49. Holmstrup, M., Bindesbol, A. M., Oostingh, G. J., Duschl, A., Scheil, V., Kohler, H. R., et al. (2010). Interactions between effects of environmental chemicals and natural stressors: a review. Science of the Total Environment, 408(18), 3746–3762.CrossRefGoogle Scholar
  50. Hooper, M. J., Ankley, G. T., Cristol, D. A., Maryoung, L. A., Noyes, P. D., & Pinkerton, K. E. (2013). Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environmental Toxicology and Chemistry, 32(1), 32–48.CrossRefGoogle Scholar
  51. Hopkins, W. A., DuRant, S. E., Staub, B. P., Rowe, C. L., & Jackson, B. P. (2006). Reproduction, embryonic development, and maternal transfer of contaminants in the amphibian Gastrophryne carolinensis. Environmental Health Perspectives, 114(5), 661–666.CrossRefGoogle Scholar
  52. IPCC. (2013). Climate change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, & J. Boschung, et al. (Eds.), The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change (p. 1535). Cambridge: Cambridge University.Google Scholar
  53. Janssens, E., Dauwe, T., Pinxten, R., Bervoets, L., Blust, R., & Eens, M. (2003). Effects of heavy metal exposure on the condition and health of nestlings of the great tit (Parus major), a small songbird species. Environmental Pollution, 126(2), 267–274.CrossRefGoogle Scholar
  54. Janz, D. M., DeForest, D. K., Brooks, M. L., Chapman, P. M., Gilron, G., Hoff, D., et al. (2010). Selenium toxicity to aquatic organisms. In P. M. Chapman, W. J. Adams, M. L. Brooks, C. G. Delos, S. N. Luoma, & W. A. Maher, et al. (Eds.), Ecological assessment of selenium in the aquatic environment (pp. 141–231). New York: CRC Press.Google Scholar
  55. Liao, T. F. (1994). Generalized linear models and the interpretation of parameters. In Interpreting probability models logit, probit, and other generalized linear models Quantitative applications in the social sciences (pp. 4–11). Thousand Oaks: SAGE Publications Inc.Google Scholar
  56. Marmiroli, N., & Maestri, E. (2008). Health implications of trace elements in the environment and the food chain. In M. N. V. Prasad (Ed.), Trace elements as contaminants and nutrients (pp. 23–49). Hoboken: Wiley.CrossRefGoogle Scholar
  57. McCarty, J. P. (2001). Variation in growth of nestling tree swallows across multiple temporal and spatial scales. Auk, 118(1), 176–190.CrossRefGoogle Scholar
  58. McCarty, J. P., & Winkler, D. W. (1999). Relative importance of environmental variables in determining the growth of nestling Tree Swallows Tachycineta bicolor. Ibis, 141(2), 286–296.CrossRefGoogle Scholar
  59. McDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692.CrossRefGoogle Scholar
  60. Michaud, T., & Leonard, M. (2000). The role of development, parental behavior, and nestmate competition in fledging of nestling Tree Swallows. Auk, 117(4), 996–1002.CrossRefGoogle Scholar
  61. Moe, S. J., De Schamphelaere, K., Clements, W. H., Sorensen, M. T., Van den Brink, P. J., & Liess, M. (2013). Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry, 32(1), 49–61.CrossRefGoogle Scholar
  62. Møller, A. P. (2013). Biological consequences of global change for birds. Integrative Zoology, 8(2), 136–144.CrossRefGoogle Scholar
  63. Nooker, J. K., Dunn, P. O., & Whittingham, L. A. (2005). Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk, 122(4), 1225–1238.CrossRefGoogle Scholar
  64. Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., et al. (2009). The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6), 971–986.CrossRefGoogle Scholar
  65. NRC. (2006). Managing coal combustion residues in mines. Washington, D.C.: National Research Council, National Academies Press.Google Scholar
  66. Nyholm, N. E. I., & Myhrberg, H. E. (1977). Severe eggshell defects and impaired reproductive capacity in small passerines in Swedish Lapland. Oikos, 29(2), 336–341.CrossRefGoogle Scholar
  67. Nystrom, P., Hansson, J., Mansson, J., Sundstedt, M., Reslow, C., & Brostrom, A. (2007). A documented amphibian decline over 40 years: possible causes and implications for species recovery. Biological Conservation, 138(3–4), 399–411.CrossRefGoogle Scholar
  68. Ohlendorf, H. M. (2003). Ecotoxicology of selenium. In D. J. Hoffman, B. A. Rattner, G. A. J. Burton, & J. J. Cairns (Eds.), Handbook of ecotoxicology (2nd ed., pp. 465–500). Boca Raton, Fl: CRC.Google Scholar
  69. Ohlendorf, H. M. (2011). Selenium, salty water, and deformed birds. In J. E. Eliott, C. A. Morrissey, & C. A. Bishop (Eds.), Wildlife ecotoxicology: forensic approaches (pp. 325–357). New York: Springer.Google Scholar
  70. Ohlendorf, H. M., & Heinz, G. H. (2011). Selenium in birds. In W. N. Beyer & J. P. Meador (Eds.), Environmental contaminants in biota (pp. 669–701). Boca Raton: CRC Press.CrossRefGoogle Scholar
  71. Pipoly, I., Bokony, V., Seress, G., Szabo, K., & Liker, A. (2013). Effects of extreme weather on reproductive success in a temperate-breeding songbird. PLoS ONE, 8((11), e80033. doi: 10.1371/journal.pone.0080033.CrossRefGoogle Scholar
  72. Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. J. M., Delorme, D., Warnant, C., et al. (2014). Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biology, 12(4), e1001828. doi: 10.1371/journal.pbio.1001828.CrossRefGoogle Scholar
  73. Puls, R. (1994). Mineral levels in animal health (2nd ed.). Clearbrook: Sherpa International.Google Scholar
  74. Quinney, T. E., & Ankney, C. D. (1985). Prey size selection by tree swallows. Auk, 102(2), 245–250.CrossRefGoogle Scholar
  75. Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256–1268.CrossRefGoogle Scholar
  76. Reilly, C. (2006). Selenium in food and health. New York: Springer.Google Scholar
  77. Robertson, R. J., Stutchbury, B. J., Cohen, R. R., Winkler, D. W., Hallinger, K. K., & Ardia, D. R. (2011). Tree Swallow. http://bna.birds.cornell.edu/bna/species/011/articles/introduction. Accessed 10 Apr 2012.
  78. Rowe, C. L., Hopkins, W. A., & Congdon, J. D. (2002). Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environmental Monitoring and Assessment, 80(3), 207–276.CrossRefGoogle Scholar
  79. Saether, B. E., Sutherland, W. J., & Engen, S. (2004). Climate influences on avian population dynamics. In A. P. Moller, W. Fielder, & P. Berthold (Eds.), Birds and Climate Change (Vol. 35, pp. 185-209, Advances in Ecological Research).Google Scholar
  80. Salafsky, N., Salzer, D., Stattersfield, A. J., Hilton-Taylor, C., Neugarten, R., Butchart, S. H. M., et al. (2008). A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conservation Biology, 22(4), 897–911.CrossRefGoogle Scholar
  81. Savage, W. K., Quimby, F. W., & DeCaprio, A. P. (2002). Lethal and sublethal effects of polychlorinated biphenyls on Rana sylvatica tadpoles. Environmental Toxicology and Chemistry, 21(1), 168–174.CrossRefGoogle Scholar
  82. Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size residuals: validating body condition indices. Ecology, 86(1), 155–163.CrossRefGoogle Scholar
  83. Shore, R. F., Pereira, M. G., Walker, L. A., & Thompson, D. R. (2011). Mercury in nonmarine birds and mammals. In W. N. Beyer & J. P. Meador (Eds.), Environmental contmaninants in biota (pp. 609–626). Boca Raton, Fl: CRC Press.CrossRefGoogle Scholar
  84. Stantec. (2009). TVA disposal facility assessment phase 1 plant summary Bull Run Fossil Plant (BRF). Nashville: Tennessee Valley Authority and Stantec, 76 p.Google Scholar
  85. Stutchbury, B. J., & Robertson, R. J. (1987). Two methods of sexing adult tree swallows before they begin breeding. Journal of Field Ornithology, 58(2), 236–242.Google Scholar
  86. Stutchbury, B. J., & Robertson, R. J. (1988). Within-season and age-related patterns of reproductive-performance in female tree swallows (Tachycineta bicolor). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 66(4), 827–834.CrossRefGoogle Scholar
  87. TVA. (2009). Corrective action plan for the TVA Kingston fossil plant ash release. (Vol. March 2, 2009, pp. 73). Kingston: Tennessee Valley Authority.Google Scholar
  88. TVA (2011a). Inspection report: TVA's groundwater monitoring at coal combustion products disposal areas. (Vol. 2009-12991, pp. 29). Knoxville, TN: Office of Inspector General, Tennessee Valley Authority.Google Scholar
  89. TVA. (2011b). TVA Kingston fossil fuel plant release site on-scene coordinator report for the time-critical removal action May 11, 2009 through December 2010. (pp. 222). Harriman, TN: Tennessee Valley Authority.Google Scholar
  90. USDA (2009). Lower Clinch River rapid watershed assessment. (pp. 19). Clinton, TN: United States Department of Agriculture and the Natural Resources Conservation Service.Google Scholar
  91. Weech, S. A., Scheuhammer, A. M., & Wayland, M. E. (2012). Selenium accumulation and reproduction in birds breeding downstream of a uranium mill in northern Saskatchewan, Canada. Ecotoxicology, 21(1), 280–288.CrossRefGoogle Scholar
  92. Wiggins, D. A. (1990). Food availability, growth, and heritability of body size in nestling tree swallows (Tachycineta bicolor). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 68(6), 1292–1296.CrossRefGoogle Scholar
  93. Winkler, D. W., Luo, M. K., & Rakhimberdiev, E. (2013). Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia, 173(1), 129–138.CrossRefGoogle Scholar
  94. Zanette, L., Clinchy, M., & Smith, J. N. M. (2006). Combined food and predator effects on songbird nest survival and annual reproductive success: results from a bi-factorial experiment. Oecologia, 147(4), 632–640.CrossRefGoogle Scholar
  95. Zwolak, I., & Zaporowska, H. (2012). Selenium interactions and toxicity: a review Selenium interactions and toxicity. Cell Biology and Toxicology, 28(1), 31–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michelle L. Beck
    • 1
  • William A. Hopkins
    • 1
  • Brian P. Jackson
    • 2
  • Dana M. Hawley
    • 3
  1. 1.Department of Fish and Wildlife ConservationVirginia TechBlacksburgUSA
  2. 2.Department of Earth SciencesDartmouth CollegeHanoverUSA
  3. 3.Department of BiologyVirginia TechBlacksburgUSA

Personalised recommendations