Characterization of Chironomidae (Diptera) surface-floating pupal exuviae sample sort time from coastal tropical aquatic systems

Article

Abstract

Many studies either ignore chironomids or only identify specimens to subfamily or tribe due to the associated difficulty and high cost with processing and identifying larvae. An efficient form of sampling chironomids involves collections of surface-floating pupal exuviae (SFPE). SFPE sample sorting has been shown to be more time efficient than traditional dip-net methods in temperate urban and peri-urban streams. However, no published studies have tested the time efficiency of SFPE sample sorting from coastal tropical aquatic systems. We calculated sort times for SFPE samples collected from a coastal tropical stream and an estuary and used multiple linear regression analysis to quantify the relationship between sample sort time and number of specimens, average body length of specimens, and dry weight of sample residue. The average amount of time required to sort very small samples was 69.3 min, while moderate samples averaged 85.6 min and large samples averaged 153.5 min. However, on average, small samples were nine times more time consuming per specimen than large samples. Additionally, dry weight of small-sized residue and the number of specimens contributed significantly to sort time. Therefore, we recommend collecting larger samples, which can be achieved by sampling for 20 min over 200-m reaches for stream sites and 500- to 1,000-m reaches for riverine and estuarine sites. Also, we suggest collecting during periods of low wave action and disturbance by boat wake to reduce the amount of sample residue. This research will enhance project planning and budgeting of future studies using the SFPE method to monitor coastal tropical aquatic systems.

Keywords

Aquatic insects Time efficiency Neotropical Stream Estuary 

References

  1. Anderson, A. M., & Ferrington, L. C. (2012). Time-efficiency of sorting Chironomidae surface-floating pupal exuviae samples from urban trout streams in Northeast Minnesota, USA. In E. E. Stur & K. Aagaard (Eds.), 18th International Symposium on Chironomidae. Trondheim, Norway: Fauna norvegica.Google Scholar
  2. Armitage, P. D., Cranston, P. S., & Pinder, L. C. V. (1995). The Chironomidae: biology and ecology of non-biting midges: Chapman & Hall.Google Scholar
  3. Ashe, P., Murray, D. A., & Reiss, F. (1987). The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie, 23(1), 27–60.CrossRefGoogle Scholar
  4. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. (2nd ed., Vol. EPA 841-B-99-002) (2nd ed.). Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.Google Scholar
  5. Bouchard, R. W., & Ferrington, L. C. (2011). The effects of subsampling and sampling frequency on the use of surface-floating pupal exuviae to measure Chironomidae (Diptera) communities in wadeable temperate streams. Environmental Monitoring and Assessment, 181(1–4), 205–223.CrossRefGoogle Scholar
  6. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211–252.Google Scholar
  7. Coffman, W. P. (1973). Energy flow in a woodland stream ecosystem: II. The taxonomic composition of the Chironomidae as determined by the collection of pupal exuviae. Archiv fur Hydrobiologie, 71, 281–322.Google Scholar
  8. Ferrington, L. C. (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. In E. V. Balian, C. Lévêque, H. Segers, & K. Martens (Eds.), Freshwater animal diversity assessment, Developments in Hydrobiology, Vol. 198 (pp. 447–455). Netherlands: Springer Netherlands.CrossRefGoogle Scholar
  9. Ferrington, L. C., Blackwood, M. A., Wright, C. A., Crisp, N. H., Kavanaugh, J. L., & Schmidt, F. J. (1991). A protocol for using surface-floating pupal exuviae of Chironomidae for rapid bioassessment of changing water-quality. In N. E. Peters & D. E. Walling (Eds.), Sediment and stream water quality in a changing environment: trends and explanation. Oxfordshire, U.K: International Association of Hydrological Sciences Press.Google Scholar
  10. Ferrington, L. C., Berg, M. B., & Coffman, W. P. (2008). Chironomidae. In R. W. Merritt, K. W. Cummins, & M. B. Berg (Eds.), An introduction to the aquatic insects of North America (4th ed., pp. 847–989). Dubuque, IA: Kendall/Hunt Publishing Company.Google Scholar
  11. Hirth, H. F. (1963). The ecology of two lizards on a tropical beach. Ecological Monographs, 33, 83–112.CrossRefGoogle Scholar
  12. Jones, F. C. (2008). Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews, 16, 45–69.CrossRefGoogle Scholar
  13. Jongman, R. H. G., Ter Braak, C. J. F., & van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  14. Kranzfelder, P. (in revision). Temporal and spatial variability of Chironomidae (Insecta: Diptera) species emergence in a Neotropical estuary. Freshwater Science.Google Scholar
  15. Kranzfelder, P. (in preparation). Cumulative effects of coastal watershed land use on Chironomidae (Insecta: Diptera) communities of Neotropical estuaries in Costa Rica. University of Minnesota, Minneapolis, MN.Google Scholar
  16. Kranzfelder, P., Anderson, A. M., Egan, A. T., Mazack, J. E., Bouchard, R. W., & Ferrington, L. C. (in press). Use of Chironomidae (Diptera) surface-floating pupal exuviae as a rapid bioasessment protocol for water bodies. Journal of Visualized Experiments (JoVE).Google Scholar
  17. Lenat, D. R. (1988). Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society, 7(3), 222–233.CrossRefGoogle Scholar
  18. Mora, J. M., Rodríguez, M. A., & López, L. I. (2003). Sondeo ecológico rápido y monitoreo de especies indicadoras en el Parque Nacional Tortuguero. In INBIO (Ed.). Guapiles, Costa Rica.Google Scholar
  19. Nordlie, F. G., & Kelso, D. P. (1975). Trophic relationships in a tropical estuary. Revista de Biología Tropical, 23, 77–99.Google Scholar
  20. Nuhn, H., Pérez, S. R., & Sandner, G. (1967). Estudio geográfico regional de la zona atlántico norte de Costa Rica. In I. d. T. y. Colonización (Ed.). San José, Costa Rica: Instituto de Tierras y Colonización.Google Scholar
  21. Pinder, L. C. V. (1986). Biology of freshwater Chironomidae. Annual Review of Entomology, 31, 1–23.CrossRefGoogle Scholar
  22. Pringle, C. M., & Hamazaki, T. (1998). The role of omnivory in a Neotropical stream: separating diurnal and nocturnal effects. Ecology, 79(1), 269–280.CrossRefGoogle Scholar
  23. Pringle, C. M., Scatena, F. N., Paaby-Hansen, P., & Nunez-Ferrera, M. (2000). River conservation in Latin America and the Caribbean. In P. J. Boon, B. Davies, & G. E. Petts (Eds.), Global perspectives on river conservation: science, policy and practice (pp. 41–77). Durham, NC: John Wiley and Sons.Google Scholar
  24. Ramirez, A., & Pringle, C. M. (1998). Invertebrate drift and benthic community dynamics in a lowland Neotropical stream, Costa Rica. Hydrobiologia, 386, 19–26.CrossRefGoogle Scholar
  25. Ramírez, A., Pringle, C. M., & Wantzen, K. M. (2008). Tropical stream conservation. In D. Dudgeon (Ed.), Tropical stream ecology (pp. 285–304). London: Academic Press.CrossRefGoogle Scholar
  26. Rinella, D. J., & Feminella, J. W. (2005). Comparison of benthic macroinvertebrates colonizing sand, wood, and artificial substrates in a low-gradient stream. Journal of Freshwater Ecology, 20(2), 209–220.CrossRefGoogle Scholar
  27. Rosemond, A. D., Pringle, C. M., & Ramírez, A. (1998). Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biology, 39(3), 515–523.CrossRefGoogle Scholar
  28. Rosenberg, D. (1992). Freshwater biomonitoring and Chironomidae. Netherland Journal of Aquatic Ecology, 26(2–4), 101–122.CrossRefGoogle Scholar
  29. Ruse, L. (2011). Lake acidification assessed using chironomid pupal exuviae. Fundamental and Applied Limnology, 178(4), 267–286.CrossRefGoogle Scholar
  30. Stein, H., Springer, M., & Kohlmann, B. (2008). Comparison of two sampling methods for biomonitoring using aquatic macroinvertebrates in the Dos Novillos River, Costa Rica. Ecological Engineering, 34(4), 267–275.CrossRefGoogle Scholar
  31. Wiederholm, T. (1986). Chironomidae of the Holarctic region. Part 2. Pupae (Vol. 28): Entomologica Scandinavica Supplement.Google Scholar
  32. Wilson, R. S., & McGill, J. D. (1977). A new method of monitoring water quality in a stream receiving sewage effluent, using chironomid pupal exuviae. Water Research, 11(11), 959–962.CrossRefGoogle Scholar
  33. Winemiller, K. O., & Leslie, M. A. (1992). Fish assemblages across a complex, tropical freshwater/marine ecotone. Environmental Biology of Fishes, 34(1), 29–50.CrossRefGoogle Scholar
  34. Winemiller, K. O., & Ponwith, B. J. (1998). Comparative ecology of eleotrid fishes in Central American coastal streams. Environmental Biology of Fishes, 53, 373–384.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2015

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations