Advertisement

Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study

  • Vladimír Frišták
  • Martin Pipíška
  • Juraj Lesný
  • Gerhard Soja
  • Wolfgang Friesl-Hanl
  • Alena Packová
Article

Abstract

The objective of this study was to study the utilization of two different woody-derived biochars for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions. Physicochemical characterization confirmed the main differences in sorbent surface area and cation-exchange capacity. The maximum cadmium, zinc, and copper sorption capacities were 1.99, 0.97, and 2.50 mg g−1 for biochar (BC) A; 7.80, 2.23, and 3.65 mg g−1 for BC B. Sorption processes can be affected by time and pH. The most of sorbed cadmium and zinc were bound on exchangeable fractions and copper oxidizable fractions. Chemical modification and FT-IR analyses confirmed the crucial roles of hydroxyl and mainly carboxyl functional groups in sorption processes of Cd2+, Zn2+, and Cu2+ ions by BC A and BC B. The garden wood rests with leaf mass-derived biochar can be utilized as an effective sorbent for bivalent ions.

Keywords

Biochar Feedstock Sorption Cd Zn Cu 

Supplementary material

10661_2014_4093_MOESM1_ESM.docx (339 kb)
ESM 1 (DOCX 339 kb)
10661_2014_4093_MOESM2_ESM.docx (256 kb)
ESM 2 (DOCX 256 kb)
10661_2014_4093_MOESM3_ESM.docx (246 kb)
ESM 3 (DOCX 245 kb)

References

  1. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.CrossRefGoogle Scholar
  2. Azizian, S., & Fallah, R. N. (2010). A new empirical rate equation for adsorption kinetics at solid/solution interface. Applied Surface Science, 256, 5153–5156.CrossRefGoogle Scholar
  3. Bolan, N. S., Adriano, D. C., & Naidu, R. (2003). Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and Toxicology, 177, 1–44.Google Scholar
  4. Chen, X., Chen, G., Chen, L., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877–8884.CrossRefGoogle Scholar
  5. Chun, Y., Sheng, G. Y., Chiou, C. T., & Xing, B. S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38, 4649–4655.CrossRefGoogle Scholar
  6. Fallah, R. N., & Azizian, S. (2012). Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Processing Technology, 93, 45–52.CrossRefGoogle Scholar
  7. Friesl-Hanl, W., Platzer, K., Horak, O., & Gerzabek, M. H. (2009). Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environmental Geochemistry and Health, 31, 581–594.CrossRefGoogle Scholar
  8. Frišták, V., Pipíška, M., Horník, M., Augustín, J., & Lesný, J. (2013). Sludge of wastewater treatment plants as Co2+ ions adsorbent. Chemical Papers, 67, 265–273.Google Scholar
  9. Frišták, V., Pipíška, M., Valovčiaková, M., Lesný, J., & Rozložník, M. (2014). Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. Journal of Radioanalytical and Nuclear Chemistry, 299, 1607–1614.CrossRefGoogle Scholar
  10. Fuertes, A. B., Arbestain, M. C., Sevilla, M., Macia-Agullo, J. A., Fiol, S., Lopez, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., & Macias, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover. Australian Journal of Soil Research, 48, 618–626.CrossRefGoogle Scholar
  11. Gardea-Torresdey, J., Becker-Hapak, M. K., Hosea, J. M., & Darnall, D. W. (1990). Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science and Technology, 24, 1372–1378.CrossRefGoogle Scholar
  12. Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of ASABE, 56, 2061–2069.CrossRefGoogle Scholar
  13. Gu, Z., Wu, M., Li, K., & Ning, P. (2013). Variation of heavy metal speciation during the pyrolysis of sediment collected from the Dianchi Lake, China. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2013.07.053.Google Scholar
  14. Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204.CrossRefGoogle Scholar
  15. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.CrossRefGoogle Scholar
  16. Iqbal, M., Saeed, A., & Zafar, S. I. (2009). FTIR spectrophotometry kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism od Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 164, 161–171.CrossRefGoogle Scholar
  17. Karer, J., Wimmer, B., Zehetner, F., Kloss, S., & Soja, G. (2013). Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agricultural and Food Science, 22, 390–403.Google Scholar
  18. Kim, W. K., Shim, T., Kim, Y. S., Hyun, S., Ryu, C., Park, Y. K., & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270.CrossRefGoogle Scholar
  19. Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schawanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, 990–1000.CrossRefGoogle Scholar
  20. Kloss, S., Zehetner, F., Oburger, E., Buecker, J., Kitzler, B., Wenzel, W. W., Wimmer, B., & Soja, G. (2014). Trace element concentration in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soil. Science of the Total Environment, 481, 498–508.CrossRefGoogle Scholar
  21. Kolodynska, D., Wnetrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapinski, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.CrossRefGoogle Scholar
  22. Lair, G. J., Gerzabek, M. H., Haberhauer, G., Jakusch, M., & Kirchmann, H. (2006). Response of the sorption behavior of Cu, Cd, and Zn to different soil managment. Journal of Plant Nutrition and Soil Science, 169, 60–68.CrossRefGoogle Scholar
  23. Lee, Y., Eum, P. R. B., Ryu, C., Park, Y. K., Jung, J., & Hyun, S. (2012). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345–350.CrossRefGoogle Scholar
  24. Lehmann, J., Joseph, S. (2009). Biochar for environmental management: science and technology, Earthscan/James James.Google Scholar
  25. Loudon, G. M. (1984). Organic Chemistry. Massachusetts: Addison-Wesley Publishing Company, Reading.Google Scholar
  26. Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.CrossRefGoogle Scholar
  27. Melichová, Z., & Hromada, L. (2013). Adsorption of Pb2+ and Cu2+ ions from aqeous solutions on natural bentonite. Polish Journal of Environmental Studies, 22, 457–464.Google Scholar
  28. Mohan, D., Pittman, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gomez-Serrano, V., & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid Interface Science, 310, 57–73.CrossRefGoogle Scholar
  29. OECD-Guideline 106 (2001): OECD Guideline for the testing of chemicals. Adsorption-Desorption using a batch equilibrium method. Organisation for Economic Co-operation and Development (OECD), Paris.Google Scholar
  30. Özer, D., Dursun, G., & Özer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 177, 171–179.CrossRefGoogle Scholar
  31. Rauret, G., López-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.CrossRefGoogle Scholar
  32. Salih, H. H., Patterson, C. L., Sorial, G. A., Sinha, R., & Krishnan, R. (2011). The fate and transport of the SiO2 nanoparticles in a granular activated carbon bed and their impact on the removal of VOCs. Journal of Hazardous Materials, 193, 95–101.CrossRefGoogle Scholar
  33. Tica, D., Udovic, M., & Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85, 577–583.CrossRefGoogle Scholar
  34. Trakal, L., Šigut, R., Šillerová, H., Faturíková, D., & Komárek, M. (2014). Copper removal from aqueous solution using biochar: effect of chemical activation. Arabian Journal of Chemistry, 7, 43–52.CrossRefGoogle Scholar
  35. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200–202, 673–680.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimír Frišták
    • 1
    • 2
  • Martin Pipíška
    • 1
  • Juraj Lesný
    • 1
  • Gerhard Soja
    • 2
  • Wolfgang Friesl-Hanl
    • 2
  • Alena Packová
    • 3
  1. 1.Department of Ecochemistry and RadioecologyUniversity of SS. Cyril and MethodiusTrnavaSlovak Republic
  2. 2.Department of Health & EnvironmentAustrian Institute of Technology GmbHTullnAustria
  3. 3.Department of ChemistryUniversity of SS. Cyril and MethodiusTrnavaSlovak Republic

Personalised recommendations