Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia

  • A. D. Syakti
  • C. Demelas
  • N. V. Hidayati
  • G. Rakasiwi
  • L. Vassalo
  • N. Kumar
  • P. Prudent
  • P. Doumenq


The concentrations of eight elements (Cr, Cu, Fe, Mn, Ni, Ti, V, and Zn) in surface sediments from Segara Anakan Nature Reserve (SARN), Indonesia, were determined using inductively coupled plasma–atomic emission spectroscopy following microwave-assisted acid digestion. In general, the heavy metal concentrations of the sediments were found to decrease in the sequence Fe > Ti > Mn > Zn > V > Cu > Cr > Ni. Sediment pollution assessment was carried out using a pollution status index contamination factor, pollution load index, geoaccumulation index, and enrichment factor as well as by comparing the measured values with two sediment quality guidelines, i.e., threshold effect level and probable effect level. The evaluation showed that in the refinery site stations, Cr, Ni, and Zn concentrations found in the SANR sediments may cause the adverse effect to occur over a wider range of organisms and can contribute to a more serious harmful effect.

Graphical Abstract


Heavy metals River basin Environmental chemistry Sediment quality assessment Industrial effluents 


  1. Accornero, A., Gnerre, R., & Manfra, L. (2008). Sediment concentrations of trace metals in the Berre Lagoon (France): an assessment of contamination. Archives of Environmental Contamination and Toxicology, 54, 372–385.CrossRefGoogle Scholar
  2. Acevedo-Figueroa, D., Jimenez, B. D., & Rodriguez-Sierra, C. J. (2006). Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution, 141, 336–342.CrossRefGoogle Scholar
  3. AFNOR (Association Française de Normalization), AFNOR, Paris 1994. 250 pp.Google Scholar
  4. Amin, B., Ismail, A., Arshad, A., Yap, C. K., & Kamarudin, M. S. (2009). Gastropod assemblages as indicators of sediment metal contamination in mangroves of Dumai, Sumatra, Indonesia. Water Air Soil Pollution, 2011, 9–18.CrossRefGoogle Scholar
  5. Angula, E. (1996). The Tomlinson Pollution Index applied to heavy metal, Mussel-Watch data: a useful index to assess coastal pollution. Science of the Total Environment, 187, 19–56.CrossRefGoogle Scholar
  6. Ardhli, R. A., & Wolff, M. (2009). Land use and land cover change affecting habitat distribution in the Segara Anakan lagoon, Java, Indonesia. Regional Environmental Change, 9, 235–243.CrossRefGoogle Scholar
  7. Avila-Perez, P., Balcazar, M., Zarazuo-Ortega, G., Barcelo-Quintal, I., & Diaz-Delgado, C. (1996). Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. The Science of the Total Environment, 234, 185–196.CrossRefGoogle Scholar
  8. Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.CrossRefGoogle Scholar
  9. Bloundi, M. K., Duplay, J., & Quaranta, G. (2009). Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environmental Geology, 56, 833–843.CrossRefGoogle Scholar
  10. Bressy, F. C., Brito, G. B., Barbosa, I. S., Teixeira, L. S. G., & Korn, M. G. A. (2013). Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchemical Journal, 119, 115–119.Google Scholar
  11. Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell’Atti, A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99, 227–235.CrossRefGoogle Scholar
  12. Daskalakis, K. D., & O’Connor, T. P. (1995). Normalization and elemental sediment contamination in the Coastal United States. Environmental Science and Technology, 29, 470–477.CrossRefGoogle Scholar
  13. Dsikowitzky, L., Nordhaus, I., Jennerjahn, T. C., Khrycheva, P., Sivatharshan, Y., Yuwono, E., & Schwarzbauer, J. (2011). Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Marine Pollution Bulletin, 62, 851–862.CrossRefGoogle Scholar
  14. El-Moselhy, K. M. (2006). Distribution of vanadium in bottom sediments from the marine coastal area of Egyptian seas. Egyptian Journal of Aquatic Research, 32, 12–21.Google Scholar
  15. Everaarts, J. M. (1989). Heavy metals (Cu, Zn, Cd, Pb) in sediment of the Java Sea, estuarine and coastal areas of East Java and some deep-sea areas. Netherlands Journal of Sea Research, 23, 403–413.CrossRefGoogle Scholar
  16. Farkas, A., Erratico, C., & Vgano, L. (2007). Assessment of the environmental significance of heavy metals pollution in surface sediments of the River Po. Chemosphere, 68, 761–768.CrossRefGoogle Scholar
  17. Greenwood, N.N.,Earnshaw, A., Chemistry of the Elements, 2nd edition, Butterworth-Heinemann 1997; ISBN 0-7506-3365-4 Appendix 4, Abundance of Elements in Crustal Rocks.Google Scholar
  18. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  19. Heiny, J. S., & Tate, C. M. (1997). Concentration distribution comparison of selected trace elements in bed sediment fish tissue in the South Platte River Basin U.S.A. 1992–1993. Archives of Environmental Contamination and Toxicology, 32, 246–259.CrossRefGoogle Scholar
  20. Holtermann, P., Burchard, H., & Jennerjahn, T. (2009). Hydrodynamic of the Segara Anakan lagoon. Regional Environmental Change, 9, 245–258.CrossRefGoogle Scholar
  21. Khala, F., Literathy, P., & Anderlini, V. (1982). Vanadium as a tracer of oil pollution of the sediments of Kuwait. Hydrobiologia, 91, 147–154.CrossRefGoogle Scholar
  22. Landre, A. L., Winter, J. G., Helm, P., Hiriart-Baer, V., & Young, J. (2011). Metals in Lake Simcoe sediments and tributaries: do recent trends indicate changing sources? Journal of Great Lakes Research, 37, 124–131.CrossRefGoogle Scholar
  23. Liu, J., Li, Y., Zhang, B., Cai, J., Cao, Z., & Domagalski, J. (2009). Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology, 18, 748–759.CrossRefGoogle Scholar
  24. Long, E. R., Ingersoll, C. G., & MacDonald, D. D. (2005). Calculation and uses of mean sediment quality guideline quotients: a critical review. Environmental Sciences and Technology, 40, 1726–1736.CrossRefGoogle Scholar
  25. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  26. Muller, G. (1981). Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. GeoJournal, 5, 417–432.CrossRefGoogle Scholar
  27. Noegrohati, S. (2005). Assessment of possible indirect risk naturally occurring mercury and cadmium through Mugil sp. and Geloina sp. consumption in Segara Anakan estuarine ecosystem. Indonesian Journal of Chemistry, 5, 135–142.Google Scholar
  28. Olivares-Rieumont, S., de la Rosa, D., Lima, L., Graham, D. W., Alessandro, K. D., Borroto, J., Martinez, F., & Sanchez, J. (2005). Assessment of heavy metal levels in Almendares River sediments—Havana City. Cuba Water Research, 39, 3945–3953.CrossRefGoogle Scholar
  29. Prudencio, M. I., Gonzalez, M. I., Diasa, M. I., Galan, E., & Ruiz, F. (2007). Geochemistry of sediments from El Melah lagoon (NE Tunisia): a contribution for the evaluation of anthropogenic inputs. Journal of Arid Environment, 69, 285–298.CrossRefGoogle Scholar
  30. Qing-Hua, Y., Li, Y., Qing, W., & Xiao-qin, M. (2012). Determination of major and trace elements in six herbal drugs for relieving heat and toxic by ICP-AES with microwave digestion. Journal of Saudi Chemical Society, 16, 287–290.CrossRefGoogle Scholar
  31. Rifaat, A. E. (2005). Major controls of metals’ distribution in sediments of the Nile Delta Egypt. Egyptian Journal of Aquatic Research, 3, 16–28.Google Scholar
  32. Sainbayar, J., Monkhoobor, D., & Avid, B. (2012). Determination of trace elements in the Tamsagbulag and Tagaan Els crude oils and their distillation fractions using by ICP-OES. Advances in Chemical Engineering and Science, 2, 113–117.CrossRefGoogle Scholar
  33. Sakan, S. M., Djordjevi, D. S., Manojlovic, D. D., & Polic, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.CrossRefGoogle Scholar
  34. Sandler, A., & Herut, B. (2000). Composition of clays along the continental shelf off Israel: contribution of the Nile versus local sources. Marine Geology, 167, 339–354.CrossRefGoogle Scholar
  35. Sastranegara, M. H., Fermon, H., & Mühlenberg, M. (2003). Diversity and abundance of intertidal crabs at the East Swamp Managed Area in Segara Anakan Cilacap, Central Java, Indonesia. Göttingen: Deutscher Tropentag.Google Scholar
  36. Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomati river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.CrossRefGoogle Scholar
  37. Syakti, A. D., Hidayati, N. V., Hilmi, E., Piram, A., & Doumenq, P. (2013). Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Marine Pollution Bulletin, 74, 141–148.CrossRefGoogle Scholar
  38. Takarina, N. D., Browne, D. R., & Risk, M. J. (2004). Speciation of heavy metals in coastal sediments of Semarang, Indonesia. Marine Pollution Bulletin, 49, 854–874.CrossRefGoogle Scholar
  39. Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. F. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgol Wiss Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  40. Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.CrossRefGoogle Scholar
  41. White, A.T., Martosubroto, P., Sadorra, M.S.M., The coastal environment profile of Segara Anakan—Cilacap, South Java, Indonesia. ICLARM. Association of Southeast Asian Nations. United States Coastal Resources Management Project. Technical Publication Series 1989; 4:81ppGoogle Scholar
  42. WHO. Manganese and its compounds: environmental aspects. (Concise International Chemical Assessment Document; 63). World Health Organization. Geneva, 2004.Google Scholar
  43. Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., & Hamzah, K. (2013). Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass. Journal of Magnetism and Magnetic Materials, 326, 123–128.CrossRefGoogle Scholar
  44. Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642.CrossRefGoogle Scholar
  45. Yuwono, E., Jennerjahn, T. C., Nordhaus, I., Ardli, E. R., Sastranegara, M. H., & Pribadi, R. (2007). Ecological status of Segara Anakan, Java, Indonesia, a mangrove-fringed lagoon affected by human activities. Asian Journal of Water, Environment and Pollution, 4, 61–70.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. D. Syakti
    • 1
  • C. Demelas
    • 2
  • N. V. Hidayati
    • 1
  • G. Rakasiwi
    • 3
  • L. Vassalo
    • 2
  • N. Kumar
    • 4
  • P. Prudent
    • 2
  • P. Doumenq
    • 5
  1. 1.Fisheries and Marine Sciences FacultyJenderal Soedirman UniversityPurwokertoIndonesia
  2. 2.Aix-Marseille Université, CNRS, Laboratoire Chimie EnvironnementMarseille Cedex 3France
  3. 3.Center for Coastal and Marine Resources StudiesBogor Agricultural UniversityBogorIndonesia
  4. 4.Aix Marseille Université, CEREGE/UMR 6635 Europôle de l’ArboisAix-En-Provence Cedex 4France
  5. 5.Aix Marseille Université, CNRS, Laboratoire Chimie Environnement, FRE 3416, équipe MPO. Europôle de l’ArboisAix-en-Provence Cedex 4France

Personalised recommendations