Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 9023–9039 | Cite as

Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre

  • S. Ramola
  • T. Mishra
  • G. Rana
  • R. K. Srivastava
Article

Abstract

Conversion of broad-spectrum organic waste into carbonaceous biochar has gained enormous interest in past few years. The present study aims to characterize feedstock (FS), i.e. bagasse (Bg), bamboo (Bm) and biochar (BC), i.e. baggase biochar (BBg), bamboo biochar (BBm) and tyre biochar (Ty). Significant changes in elemental composition, atomic ratio, proximate analyses, mineral content and heavy metal content were observed which was well supported by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. Impregnation with ferric hydroxide was done, and resultant modified biochars (MBC), i.e. iron-impregnated baggase biochar (FeBBg), iron-impregnated bamboo biochar (FeBBm) and iron-impregnated tyre biochar (FeTy), along feedstock and biochar were used for PO4 3−, Pb, Hg and Cu adsorption. In general, BBg, FeBBg, BBm, FeBBm, Ty and FeTy were found to adsorb PO4 3−, Pb, Hg and Cu better than Bg and Bm, except in few cases. Results from adsorption experiments were fitted into Langmuir, Freundlich and Temkin models of isotherms and pseudo-first-order, pseudo-second-order and Elovich models of kinetics. Result of batch study adsorption revealed that maximum adsorption of PO4 3−, Pb, Hg and Cu was done by FeBBg (adsorption mechanism explained by Freundlich model), FeTy (Temkin model), Ty (Langmuir model) and BBm (Langmuir model) respectively. According to R 2 values, pseudo-first-order reaction was well suited to PO4 3−, Pb, Hg and Cu adsorption. The optimum pH for maximum adsorption was observed to be 7.4 for PO4 3−, 5 for Cu and 6 for Pb and Hg respectively

Keywords

Modified biochar FTIR XRD Langmuir isotherm Freundlich isotherm Temkin isotherm Pseudo first order 

Notes

Acknowledgments

The authors are thankful for the financial support given under RCUK-DST India Science Bridge Project entitled “Bio-energy: Technology and Business Solutions for the UK and India”.

Supplementary material

10661_2014_4062_MOESM1_ESM.doc (2.7 mb)
ESM 1 (DOC 2746 kb)
10661_2014_4062_MOESM2_ESM.doc (401 kb)
ESM 2 (DOC 401 kb)
10661_2014_4062_MOESM3_ESM.doc (704 kb)
ESM 3 (DOC 704 kb)
10661_2014_4062_MOESM4_ESM.doc (122 kb)
ESM 4 (DOC 122 kb)

References

  1. Abe, I., Iwasaki, S., Iwata, Y., Kominami, H., & Kera, Y. (1998). Relationship between production method and adsorption property of charcoal. TANSO, 185, 277–284.CrossRefGoogle Scholar
  2. Amonette, J., Kim, J., Russell, C., Hendricks, M., Bashore, C. & Rieck, B. ASA-CSSA-SSSA International Annual Meetings 2006.Google Scholar
  3. Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.CrossRefGoogle Scholar
  4. Chan, K. Y., & Xu, Z. (2009). Biochar: nutrient properties and their enhancement. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: science and technology (pp. 67-84). London: Earthscan Publishers Ltd.Google Scholar
  5. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqeous solution. Bioresource Technology, 102, 8877–8884.CrossRefGoogle Scholar
  6. Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598–1610.CrossRefGoogle Scholar
  7. Chia, C.H, Gon,g B., Joseph S., Marjo, C. E., Munroe, P. & Rich, A.M. (2012). Imaging of mineral-enriched biochar by FTIR Raman and SEM–EDX. Vib Spectrosc DOI: 10.1016/j.vibspec.2012.06.006
  8. EPA. (2005). Title 40- Protection of environment standards for the use or disposal of sewage sludge Code of Federal Regulations Title 40 Pt 503. Washington DC: US Environmental Protection Agency.Google Scholar
  9. Gaskin, J.W., Steiner, C, Harris, K., Das, K.C & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use TransASABE, 51, 2061-2069Google Scholar
  10. Gaunt, J. & Cowie, A. (2009). Biochar greenhouse gas accounting and emission trading In: Lehmann J., Joseph & S., editors. Biochar for Environmental Management: Science and Technology (pp317– 340). Earthscan Publishers Ltd LondonGoogle Scholar
  11. Gilbert, B., & Banfield, J. (2005). Reviews in Mineralogy and Geochemistry, 59, 109–155.CrossRefGoogle Scholar
  12. Guo, Y., & Bustin, R. M. (1998). FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology, 37, 29–53.CrossRefGoogle Scholar
  13. Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., & Zachos, J. C. (2008). Target atmospheric CO2: where should humanity aim? Open Atmospheric Sciences, 2, 217–231.CrossRefGoogle Scholar
  14. Inyang, M., Gao, B., Pullammanappallil, P., Ding, W. C., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.CrossRefGoogle Scholar
  15. Inyang, M., Gao, B., Ding, W., Pullammanappallil, P., Zimmerman, A. R., & Cao, X. (2011). Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Science and Technology, 46(12), 1950–1956.Google Scholar
  16. Inyang, M., Gao, B., Ya,o Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P & C, Xinde. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol , doi:101016/jbiortech201201072Google Scholar
  17. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44, 1247–1253.CrossRefGoogle Scholar
  18. Kołodynska, D., Wnetrzak, R., Leahy, J., Hayes, M. H. B., Kwapinski, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305.CrossRefGoogle Scholar
  19. Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences Advances. In D. L. Sparks (Ed.), Advances in Agronomy, (pp 103-143). Burlington: Academic Press.Google Scholar
  20. Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152(2), 527–535.CrossRefGoogle Scholar
  21. Kuhlbusch, T. A. J., & Crutzen, P. J. (1995). Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 Global. Biogeochemical Cycles, 9, 491–501.CrossRefGoogle Scholar
  22. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: an introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: science and technology. London: Earthscan Publishers Ltd.Google Scholar
  23. Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35, 1319–1324.CrossRefGoogle Scholar
  24. Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using granular ferric hydroxide. Water SA, 29(2), 161–170.CrossRefGoogle Scholar
  25. Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology, 102(10), 6273–6278.CrossRefGoogle Scholar
  26. Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Ramola
    • 1
  • T. Mishra
    • 1
  • G. Rana
    • 2
  • R. K. Srivastava
    • 1
  1. 1.Department of Environmental ScienceGBPUATPantnagarIndia
  2. 2.Department of PhysicsGBPUATPantnagarIndia

Personalised recommendations