Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 8981–8995 | Cite as

Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands

  • J. C. Rozemeijer
  • J. Klein
  • H. P. Broers
  • T. P. van Tol-Leenders
  • B. van der Grift


Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of −0.55 mg/l per decade for total nitrogen (N-tot) and −0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.


Monitoring Water quality Agriculture Nutrients Nitrogen Phosphorus 



The authors acknowledge The Dutch Ministry of Infrastructure and the Environment for funding this research. Douwe Jonkers of the Dutch Ministry of Infrastructure and the Environment and Marianne Mul of the Water Board Union are acknowledged for their cooperation. The authors are grateful for all Water Board employees who provided the data, gave feedback, and answered all our questions. And finally, we acknowledge all field samplers and analysts who contributed to the datasets.


  1. Bartram, J. & Balance, R. (1996). Water quality monitoring—a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. United Nations Environment Programme, World Health Organization (UNEP/WHO).Google Scholar
  2. Bouraoui, F., & Grizzetti, B. (2011). Long term change of nutrient concentrations of rivers discharging in European seas. Science of the Total Environment, 409, 4899–4916.CrossRefGoogle Scholar
  3. Bouwman, A. F., Beusen, A. H. W., Billen, G. (2009). Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem. Cy. 23, Article number GB0A04.Google Scholar
  4. Broers, H. P., & Van der Grift, B. (2004). Regional monitoring of temporal changes in groundwater quality. Journal of Hydrology, 296, 192–220.CrossRefGoogle Scholar
  5. Cassidy, R., & Jordan, P. (2011). Limitations of instantaneous water quality sampling in surface-water catchments: comparison with near-continuous phosphorus time-series data. Journal of Hydrology, 405, 182–193.CrossRefGoogle Scholar
  6. CBS (2012). Statistical database Statline at www.cbs.nl. http://statline.cbs.nl/StatWeb.
  7. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836.CrossRefGoogle Scholar
  8. Commissie Integraal Waterbeheer (CIW). (2001). Leidraad monitoring (in Dutch). Lelystad: Institute for Inland Water Management and Waste Water Treatment (RIZA).Google Scholar
  9. De Wit, M., Behrendt, H., Bendoricchio, G., Bleuten, W., Van Gaans, P. (2002). The contribution of agriculture to nutrient pollution in three European rivers, with reference to the European Nitrates Directive. European Water Management Online.Google Scholar
  10. Dutch Manure Law (1986). Staatsblad 133, The Hague, The Netherlands.Google Scholar
  11. EEA. (2001). Eutrophication in Europe’s coastal waters (EEA topic report 7/2001). Copenhagen: European Environmental Agency.Google Scholar
  12. EU (1991). Nitrates directive nr. 91/676/EEC.Google Scholar
  13. Frey, S. K., Rudolph, D. L., & Conant, B. (2012). Bromide and chloride tracer movement in macroporous tile-drained agricultural soil during an annual climatic cycle. Journal of Hydrology, 460–461, 77–89.CrossRefGoogle Scholar
  14. Heathwaite, A. L., & Dils, R. M. (2000). Characterising phosphorus loss in surface and subsurface hydrological pathways. Science of the Total Environment, 251–252, 523–538.CrossRefGoogle Scholar
  15. Heinis, F. & C.H.M. Evers (2007). (in Dutch): Toelichting op ecologische doelen voor nutriënten in oppervlaktewateren. STOWA-report 2007–18, Utrecht, The Netherlands.Google Scholar
  16. Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources. Amsterdam: Elsevier. Studies in environmental science 49.Google Scholar
  17. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.CrossRefGoogle Scholar
  18. Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121.CrossRefGoogle Scholar
  19. Howden, N. J. K., Burt, T. P., Mathias, S. A., Worrall, F., & Whelan, M. J. (2011). Modelling long-term diffuse nitrate pollution at the catchment-scale: data, parameter and epistemic uncertainty. Journal of Hydrology, 403, 337–351.CrossRefGoogle Scholar
  20. Jaynes, D. B., Ahmed, S. I., Kung, K. J. S., & Kanwar, R. S. (2001). Temporal dynamics of preferential flow to a subsurface drain. Soil Science Society of America Journal, 65, 1368–1376.CrossRefGoogle Scholar
  21. Klein, J., Rozemeijer, J.C., Broers, H.P. (2012). (in Dutch): Meetnet nutrienten in landbouwspecifiek oppervlaktewater. Deelrapport A: Opzet meetnet. Bijdrage aan de evaluatie Meststoffenwet 2012. Deltares-report 1202337-000-BGS-0007, Utrecht, The Netherlands.Google Scholar
  22. Kronvang, B., Andersen, H. E., Børgesen, C., Dalgaard, T., Larsen, S. E., Bøgestrand, J., & Blicher-Mathiasen, G. (2008). Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science & Policy, 11, 144–152.CrossRefGoogle Scholar
  23. Kyllmar, K., Carlsson, C., Gustafson, A., Ulén, B., & Johnsson, H. (2006). Nutrient discharge from small agricultural catchments in Sweden. Characterisation and trends. Agriculture, Ecosystems & Environment, 115, 15–26.CrossRefGoogle Scholar
  24. Lammens, E., Van Luijn, F., Wessels, Y., Bouwhuis, H., Noordhuis, R., Portielje, R., & Van der Molen, D. (2008). Towards ecological goals for the heavily modified lakes in the IJsselmeer area, The Netherlands. Hydrobiologia, 599, 239–247.CrossRefGoogle Scholar
  25. Maasdam, R., & Claassen, T. H. L. (1998). Trends in water quality and algal growth in shallow Frisian lakes, The Netherlands. Water Science and Technology, 37, 177–184.CrossRefGoogle Scholar
  26. Makarewicz, J. C., D’Aiuto, P. E., & Bosch, I. (2007). Elevated nutrient levels from agriculturally dominated watersheds stimulate metaphyton growth. Journal of Great Lakes Research, 33, 437–448.CrossRefGoogle Scholar
  27. Mul, M. I., & Van der Vlies, A. W. (1999). Development and implementation of a policy for reduced agrochemical and nutrient emission from the agriculture to surface water in the western part of The Netherlands. Water Science and Technology, 39, 339–345.CrossRefGoogle Scholar
  28. Oenema, O., & Roest, C. W. J. (1998). Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands. Water Science and Technology, 37, 19–30.CrossRefGoogle Scholar
  29. Oenema, O., Oudendag, D., & Velthof, G. L. (2007). Nutrient losses from manure management in the European Union. Livestock Science, 112, 261–272.CrossRefGoogle Scholar
  30. Petry, J., Soulsby, C., Malcolm, I. A., & Youngson, A. F. (2002). Hydrological controls on nutrient concentrations and fluxes in agricultural catchments. Science of the Total Environment, 294, 95–110.CrossRefGoogle Scholar
  31. Räike, A., Pietiläinen, O.-P., Rekolainen, S., Kauppila, P., Pitkänen, H., Niemi, J., Raateland, A., & Vuorenmaa, J. (2003). Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975–2000. Science of the Total Environment, 310, 47–59.CrossRefGoogle Scholar
  32. Roelofs, J. G. M. (1991). Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotesaloides L. Stands. Aquatic Botany, 39, 267–293.CrossRefGoogle Scholar
  33. Roelsma, J., Van der Grift, B., Mulder, H.M., Tol-Leenders, T.P. (2011). (in Dutch): Nutriëntenhuishouding in de bodem en het oppervlaktewater van de Drentse Aa: bronnen, routes en sturingsmogelijkheden, Alterra-report 2218, Alterra, Wageningen, The Netherlands.Google Scholar
  34. Rozemeijer, J. C., & Broers, H. P. (2007). The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environmental Pollution, 148, 695–706.CrossRefGoogle Scholar
  35. Rozemeijer, J.C., & Van der Velde, Y. (2014). Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring. Fundamental and Applied Limnology 184, 195–209Google Scholar
  36. Rozemeijer, J. C., Van der Velde, Y., Van Geer, F. C., De Rooij, G. H., Torfs, P., & Broers, H. P. (2010a). Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events. Environmental Science and Technology, 44, 6305–6312.CrossRefGoogle Scholar
  37. Rozemeijer, J. C., Van der Velde, Y., Van Geer, F. C., Bierkens, M. F. P., & Broers, H. P. (2010b). Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality. Environmental Pollution, 158, 3571–3579.CrossRefGoogle Scholar
  38. Rozemeijer, J.C., Van Der Velde, Y., McLaren, R.G., Van Geer, F.C., Broers, H.P., Bierkens, M.F.P. (2010c). Integrated modeling of groundwater-surface water interactions in a tile-drained agricultural field: the importance of directly measured flow route contributions directly measured flow route contributions. Water Resources Research 46.Google Scholar
  39. Rozemeijer, J., Siderius, C., Verheul, M., & Pomarius, H. (2012). Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium. Hydrology and Earth System Sciences, 16, 2405–2415.CrossRefGoogle Scholar
  40. Skogen, M. D., & Mathisen, L. R. (2009). Long-term effects of reduced nutrient inputs to the North Sea. Estuarine, Coastal and Shelf Science, 82, 433–442.CrossRefGoogle Scholar
  41. Soetaert, K., Middelburg, J. J., Heip, C., Meire, P., Van Damme, S., & Maris, T. (2006). Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnology and Oceanography, 51, 409–423.CrossRefGoogle Scholar
  42. Stalnacke, P., Grimvall, A., Libiseller, C., Laznik, M., & Kokorite, I. (2003). Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture. Journal of Hydrology, 283, 184–205.CrossRefGoogle Scholar
  43. Stamm, C., Sermet, R., Leuenberger, J., Wunderli, H., Wydler, H., Flühler, H., & Gehre, M. (2002). Multiple tracing of fast solute transport in a drained grassland soil. Geoderma, 109, 245–268.CrossRefGoogle Scholar
  44. Tappin, A. D., Mankasingh, U., McKelvie, I. D., & Worsfold, P. J. (2013). Temporal variability in nutrient concentrations and loads in the River Tamar and its catchment (SW England) between 1974 and 2004. Environmental Monitoring and Assessment, 185, 4791–4818.CrossRefGoogle Scholar
  45. Topcu, D., Behrendt, H., Brockmann, U., & Claussen, U. (2011). Natural background concentrations of nutrients in the German Bight area (North Sea). Environmental Monitoring and Assessment, 174, 361–388.CrossRefGoogle Scholar
  46. Van Der Velde, Y., De Rooij, G. H., & Torfs, P. J. J. F. (2009). Catchment-scale non-linear groundwater-surface water interactions in densely drained lowland catchments. Hydrology and Earth System Sciences, 13, 1867–1885.CrossRefGoogle Scholar
  47. Van der Velde, Y., Rozemeijer, J. C., De Rooij, G. H., Van Geer, F. C., & Broers, H. P. (2010a). Field scale measurements for separation of catchment discharge into flow route contributions. Vadose Zone Journal, 9, 25–35.CrossRefGoogle Scholar
  48. Van der Velde, Y., De Rooij, G. H., Rozemeijer, J. C., Van Geer, F. C., Broers, H. P. (2010b). Nitrate response of a lowland catchment: on the relation between stream concentration and travel time distribution dynamics. Water Resources Research 46.Google Scholar
  49. Van Der Velde, Y., Rozemeijer, J. C., De Rooij, G. H., Van Geer, F. C., Torfs, P. J. J. F., & De Louw, P. G. B. (2011). Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup. Hydrology and Earth System Sciences, 15, 913–930.CrossRefGoogle Scholar
  50. Van Puijenbroek, P. J. T. M., Cleij, P., & Visser, H. (2014). Aggregated indices for trends in eutrophication of different types of fresh water in the Netherlands. Ecological Indicators, 36, 456–462.CrossRefGoogle Scholar
  51. Visser, A., Van der Grift, B., Broers, H. P., & Bierkens, M. F. P. (2007). Demonstrating trend reversal of groundwater quality in relation to time of recharge. Environmental Pollution, 148, 797–807.CrossRefGoogle Scholar
  52. Visser, A., Dubus, I., Broers, H. P., Brouyère, S., Korcz, M., Orban, P., Goderniaux, P., Batlle-Aguilar, J., Surdyk, N., Amraoui, N., Job, H., Pinault, J. L., & Bierkens, M. (2009). Comparison of methods for the detection and extrapolation of trends in groundwater quality. Journal of Environmental Monitoring, 11, 2030–2043.CrossRefGoogle Scholar
  53. Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., Joly, E., Fallatah, A., Neal, C., Williams, R. J., Gozzard, E., & Newman, J. R. (2012). Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences, 16, 4323–4342.CrossRefGoogle Scholar
  54. Weijters, M. J., Janse, J. H., Alkemade, R., & Verhoeven, J. T. A. (2009). Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation, 19, 104–112.CrossRefGoogle Scholar
  55. Woestenburg, M. & Van Tol-Leenders, D. (2011). (in Dutch): Sturen op schoon water. Eindrapportage project Monitoring Stroomgebieden. Alterra / Deltares. Wageningen, The Netherlands.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. C. Rozemeijer
    • 1
  • J. Klein
    • 1
  • H. P. Broers
    • 1
    • 2
    • 3
  • T. P. van Tol-Leenders
    • 4
  • B. van der Grift
    • 1
    • 5
  1. 1.DeltaresUtrechtThe Netherlands
  2. 2.TNO Geological Survey of the NetherlandsUtrechtThe Netherlands
  3. 3.Critical Zone Hydrology GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.AlterraWageningen University and Research CentreWageningenThe Netherlands
  5. 5.Department of Innovation, Environmental and Energy SciencesUtrecht UniversityUtrechtNetherlands

Personalised recommendations