Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 8555–8572 | Cite as

Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia

  • Thuoc Van Chu
  • Jean-Pascal Torréton
  • Xavier Mari
  • Huyen Minh Thi Nguyen
  • Kha Thi Pham
  • Thu The Pham
  • Thierry Bouvier
  • Yvan Bettarel
  • Olivier Pringault
  • Corinne Bouvier
  • Emma Rochelle-NewallEmail author
Article

Abstract

Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.

Keywords

Vietnam Southeast Asia Phytoplankton diversity HAB 

Notes

Acknowledgements

This work was financed by the Vietnam Academy of Science and Technology and the EC2CO project ‘HAIPHONG’, the French Institute of Research for Development (IRD), the Centre National de la Recherche Scientifique (CNRS) and the Ministry of Science and Technology of Vietnam (the MOST project on ‘Black Carbon’). We thank to the colleagues from the IMAGO Service Unit, IRD for their help with the chemical analyses. The National Hydro-Meteorological Service of Vietnam is thanked for the rainfall data. This article is dedicated to the memory of Dr. Do Trong Binh who passed away during the project.

Supplementary material

10661_2014_4024_MOESM1_ESM.doc (468 kb)
ESM 1 (DOC 468 kb)

References

  1. Aminot, A., & Kerouel, R. (1998). Pasteurization as an alternative method for preservation of nitrate and nitrite in seawater samples. Marine Chemistry, 61(3–4), 203–208.CrossRefGoogle Scholar
  2. Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4), 704–726. doi: 10.1007/bf02804901.CrossRefGoogle Scholar
  3. Balech, E. (1995). The genus Alexandrium Halim (Dinoflagellata) (Vol. 1). Sherkin Island, Co. Cork, Ireland: Sherkin Island Marine Station.Google Scholar
  4. Benschneider, K., & Robinson, R. J. (1952). A new spectrophotometric method for the determination of nitrite in sea water. Journal of Marine Research, 11, 87–96.Google Scholar
  5. Berger, W. H., & Parker, F. L. (1970). Diversity of planktonic Foraminifera in deep-sea sediments. Science, 168, 1345–1347.CrossRefGoogle Scholar
  6. Bettarel, Y., Bouvier, T., Agis, M., Bouvier, C., Chu, V. T., Combe, M., et al. (2011). Viral distribution and life strategies in the Bach Dang estuary, Vietnam. Microbial Ecology, 62, 142–154.CrossRefGoogle Scholar
  7. Borges, A. V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28(1), 3–27.CrossRefGoogle Scholar
  8. Canini, N. D., Metillo, E. B., & Azanza, R. V. (2013). Monsoon-influenced phytoplankton community structure in a Philippine mangrove estuary. Tropical Ecology, 54(3), 331–343.Google Scholar
  9. Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8(2), 148–159. doi: 10.1111/j.1461-0248.2004.00707.x.CrossRefGoogle Scholar
  10. Chapman, D. (1996). Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring: UNESCO/WHO/UNEPGoogle Scholar
  11. Chu, V. T. (1996). Phytoplankton in the three rivermouths: Tien Yen, Bach Dang and Red river. In Collection of Marine Environment and Resources (Vol. III, pp. 223–242): Science and Technics Publishing House, Hanoi, Vietnam.Google Scholar
  12. Chu, V. T., & Tran, V. D. (2003). An overview of current activities relating to phytoplankton monitoring in coastal waters of North Vietnam. Paper presented at the Workshop on Red Tide Monitoring in Asian Coastal Waters, March 10–12, 2003, University of Tokyo, JapanGoogle Scholar
  13. Chu, V. T., Nguyen, T. M. H., Pham, T. T., & Le, T. T. (2012). Some new data on phytoplankton in the western of Tonkin Gulf. Vietnam Journal of Marine Science and Technology, 12, 32–46.Google Scholar
  14. Combe, M., Bouvier, T., Pringault, O., Rochelle-Newall, E., Bouvier, C., Agis, M., et al. (2013). Freshwater prokaryote and virus communities can adapt to a controlled increase in salinity through changes in their structure and interactions. Estuarine, Coastal and Shelf Science, 133, 58–66. doi: 10.1016/j.ecss.2013.08.013.CrossRefGoogle Scholar
  15. Cronberg, G., & Annadotter, H. (2006). Manual on aquatic cyanobacteria—a photo guide and a synopsis of their toxicology. Denmark: ISSHA.Google Scholar
  16. Dollhopf, S. L., Hashsham, S. A., & Tiedje, J. M. (2001). Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microbial Ecology, 42(4), 495–505.CrossRefGoogle Scholar
  17. Duong, D. T., & Vo, H. (1997). Vietnam freshwater algae—taxonomy of order Chlorococcales. Hanoi: Agriculture Publishing House.Google Scholar
  18. Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Gold, C., Park, Y. S., et al. (2006). Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the red, Nhue and Tolich rivers (Vietnam). Hydrobiologia, 563, 201–216.CrossRefGoogle Scholar
  19. Duong, T. T., Le, T. P. Q., Dao, T.-S., Pflugmacher, S., Rochelle-Newall, E., Hoang, T., et al. (2013). Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. Journal of Applied Phycology, 25(4), 1065–1075. doi: 10.1007/s10811-012-9919-9.CrossRefGoogle Scholar
  20. Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard methods for the examination of water and wastewater (19 ed.). Washington, DC.Google Scholar
  21. Elliott, M., & McLusky, D. S. (2002). The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science, 55(6), 815–827. doi: 10.1006/ecss.2002.1031.CrossRefGoogle Scholar
  22. Fanning, G. O., & Pilson, M. E. Q. (1973). On the spectrophotometric determination of dissolved silica in natural waters. Analytical Chemistry Symposia Series, 45, 136–140.CrossRefGoogle Scholar
  23. Fisher, T. R., Harding, L. W., Stanley, D. W., & Ward, L. G. (1988). Phytoplankton, nutrients and turbidity in the Chesapeake, Delaware and Hudson estuaries. Estuarine and Coastal Shelf Science, 27, 61–93.CrossRefGoogle Scholar
  24. Fisher, T. R., Hagy, J. D., & Rochelle-Newall, E. (1998). Dissolved and particulate organic carbon in Chesapeake Bay. Estuaries, 21(2), 215–229.CrossRefGoogle Scholar
  25. Fisher, T. R., Gustafson, A. B., Sellner, K., Lacouture, R., Haas, L. W., Wetzel, R. L., et al. (1999). Spatial and temporal variation of resource limitation in Chesapeake Bay. Marine Biology, 133(4), 763–778.CrossRefGoogle Scholar
  26. Fonge, B. A., Tening, A. S., Egbe, E. A., Yinda, G. S., Fongod, A. N., & Achu, R. M. (2012). Phytoplankton diversity and abundance in Ndop wetland plain, Cameroon. African Journal of Environmental Science and Technology, 523(6), 247–257.Google Scholar
  27. Fukuyo, Y., Takano, H., Chihara, M., & Matsuoka, K. (1990). Red tide organisms in Japan—an illustrated taxonomic guide. Tokyo, Japan: Uchida Rokakuho.Google Scholar
  28. Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., et al. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948–952. doi: 10.1126/science.1149345.CrossRefGoogle Scholar
  29. He, D., Ren, J., Fu, K., & Li, Y. (2007). Sediment change under climate changes and human activities in the Yuanjiang-Red River Basin. Chinese Science Bulletin, 52(2), 164–171. doi: 10.1007/s11434-007-7010-8.Google Scholar
  30. HIO. (1995). Assessment of water quality in the Haiphong harbour and the coastal waters of Haiphong city (Project database). Haiphong, Vietnam: Institute of Marine Environment and Resources.Google Scholar
  31. Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorimetric determination of chlorophyll. [Rapp P-V Reun Cons Int Explor Mer]. Journal of Construct International Exploration Mer., 30, 3–15.CrossRefGoogle Scholar
  32. Howarth, R., & Paerl, H. W. (2008). Coastal marine eutrophication: control of both nitrogen and phosphorus is necessary. Proceedings of the National Academy of Sciences of the United States of America, 105(49), E103–E103. doi: 10.1073/pnas.0807266106.CrossRefGoogle Scholar
  33. Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B. G., Humborg, C., et al. (2012). Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 10(1), 37–43. doi: 10.1890/100178.CrossRefGoogle Scholar
  34. Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., et al. (2004). Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49(7–8), 588–596. doi: 10.1016/j.marpolbul.2004.03.015.CrossRefGoogle Scholar
  35. Huang, W., Zhu, X., Chen, Q., He, Q., Liao, Y., Du, P., et al. (2013). Seasonal variability of phytoplankton community structure in relation to different nitrogen-phosphorus ratios in the southern coastal waters of Zhejiang, China. Journal of Ocean University of China, 12(4), 577–588. doi: 10.1007/s11802-013-2192-y.CrossRefGoogle Scholar
  36. Jaanus, A., Toming, K., Hällfors, S., Kaljurand, K., & Lips, I. (2009). Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. In J. H. Andersen, & D. J. Conley (Eds.), Eutrophication in Coastal Ecosystems (Vol. 207, pp. 157–168, Developments in Hydrobiology): Springer Netherlands.Google Scholar
  37. Justić, D., Rabalais, N. N., & Turner, R. E. (1995a). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1), 41–46. doi: 10.1016/0025-326X(94)00105-I.CrossRefGoogle Scholar
  38. Justić, D., Rabalais, N. N., Turner, R. E., & Dortch, Q. (1995b). Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), 339–356. doi: 10.1016/S0272-7714(05)80014-9.CrossRefGoogle Scholar
  39. Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460(7254), 506–509.CrossRefGoogle Scholar
  40. Le, T. P. Q., Billen, G., Garnier, J., Thery, S., Ruelland, D., Nghiem, X. A., et al. (2010). Nutrient (N, P, Si) transfers in the subtropical Red River system (China and Vietnam): Modelling and budget of nutrient sources and sinks. Journal of Asian Earth Sciences, 37(3), 259–274. doi: 10.1016/j.jseaes.2009.08.010.CrossRefGoogle Scholar
  41. Lee, K. Y., Fisher, T. R., & Rochelle-Newall, E. (2001). Modeling the hydrochemistry of the Choptank river basin using GWLF and Arc/Info: 2. Model validation and application. Biogeochemistry, 56(3), 311–348.Google Scholar
  42. Lefebvre, J.-P., Ouillon, S., Vinh, V., Arfi, R., Panché, J.-Y., Mari, X., et al. (2012). Seasonal variability of cohesive sediment aggregation in the Bach Dang–Cam Estuary, Haiphong (Vietnam). Geo-Marine Letters, 32(2), 103–121. doi: 10.1007/s00367-011-0273-8.CrossRefGoogle Scholar
  43. Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.Google Scholar
  44. Li, R. H., Liu, S. M., Li, Y. W., Zhang, G. L., Ren, J. L., & Zhang, J. (2014). Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences, 11(2), 481–506. doi: 10.5194/bg-11-481-2014.CrossRefGoogle Scholar
  45. Lie, A. A. Y., Wong, C. K., Lam, J. Y. C., Liu, J. H., & Yung, Y. K. (2011). Changes in the nutrient ratios and phytoplankton community after declines in nutrient concentrations in a semi-enclosed bay in Hong Kong. Marine Environmental Research, 71(3), 178–188. doi: 10.1016/j.marenvres.2011.01.001.CrossRefGoogle Scholar
  46. Lueangthuwapranit, C., Sampantarak, U., & Wongsai, S. (2011). Distribution and abundance of phytoplankton: influence of salinity and turbidity gradients in the Na Thap River, Songkhla Province, Thailand. Journal of Coastal Research, 27(3), 585–594. doi: 10.2112/jcoastres-d-10-00123.1.CrossRefGoogle Scholar
  47. Lui, H. K., & Chen, C. T. A. (2011). Shifts in limiting nutrients in an estuary caused by mixing and biological activity. Limnology and Oceanography, 56(3), 989–998. doi: 10.4319/lo.2011.56.3.0989.CrossRefGoogle Scholar
  48. Mette, E. M., Vanni, M. J., Newell, J. M., & Gonzalez, M. J. (2011). Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish. Limnology and Oceanography, 56(6), 1959–1975. doi: 10.4319/lo.2011.56.6.1959.CrossRefGoogle Scholar
  49. Mullin, J. B., & Riley, J. P. (1955). The spectrophotometric determination of silicate-silicon in natural waters with special reference to sea water. Analytica Chimica Acta, 12, 162–170.CrossRefGoogle Scholar
  50. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. doi: 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
  51. Muylaert, K., Sabbe, K., & Vyverman, W. (2009). Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science, 82(2), 335–340.CrossRefGoogle Scholar
  52. Navarro, P., Amouroux, D., Thanh, N. D., Rochelle-Newall, E., Ouillon, S., Arfi, R., et al. (2012). Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach Dang Estuary (Haiphong, Vietnam). Marine Pollution Bulletin, 64(9), 1789–1798. doi: 10.1016/j.marpolbul.2012.05.036.CrossRefGoogle Scholar
  53. Nayar, S., Goh, B. P. L., & Chou, L. M. (2005a). Dynamics in the size structure of Skeletonema costatum (Greville) Cleve under conditions of reduced photosynthetically available radiation in a dredged tropical estuary. Journal of Experimental Marine Biology and Ecology, 318(2), 163–182. doi: 10.1016/j.jembe.2004.12.013.CrossRefGoogle Scholar
  54. Nayar, S., Goh, B. P. L., & Chou, L. M. (2005b). Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Ecotoxicology, 14(3), 397–412.CrossRefGoogle Scholar
  55. Nguyen, V. N., Le, T. T., Luu, X. H., Nguyen, V. T., Nguyen, C. T., & Fukuyo, Y. (2012). Recent HAB events in Halong Bay: increase in frequency and harmful effects. Paper presented at the XV International Conference on Harmful Algae Changwon, Korea, 28 October—2 November 2012Google Scholar
  56. Nguyen, D.-Q., Renwick, J., & McGregor, J. (2014). Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. International Journal of Climatology, 34(1), 249–264. doi: 10.1002/joc.3684.CrossRefGoogle Scholar
  57. Officer, C. B., & Ryther, J. H. (1980). The possible importance of silicon in marine eutrophication. Marine Ecology: Progress Series, 3(1), 83–91. doi: 10.3354/meps003083.CrossRefGoogle Scholar
  58. Ou, L. J., Wang, D., Huang, B. Q., Hong, H. S., Qi, Y. Z., & Lu, S. H. (2008). Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. Journal of Plankton Research, 30(9), 1007–1017.CrossRefGoogle Scholar
  59. Paerl, H. W. (2009). Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32(4), 593–601. doi: 10.1007/s12237-009-9158-8.CrossRefGoogle Scholar
  60. Palleyi, S., Kar, R. N., & Panda, C. R. (2008). Seasonal variability of phytoplankton population in the Brahmani Estuary of Orissa, India. Journal of Applied Science and Environmental Management, 12(3), 19–23.Google Scholar
  61. Patil, J. S., & Anil, A. C. (2008). Temporal variation of diatom benthic propagules in a monsoon-influenced tropical estuary. Continental Shelf Research, 28(17), 2404–2416. doi: 10.1016/j.csr.2008.06.001.CrossRefGoogle Scholar
  62. Pielou, P. C. (1975). Ecological diversity. New York: Wiley.Google Scholar
  63. Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77). New York: Wiley.Google Scholar
  64. Ricard, M. (1987). Atlas du phytoplankton marin, Diatomophycées (Vol. 2. (1–297, Paris Editions)). Paris: CNRS.Google Scholar
  65. Rochelle-Newall, E. J., & Fisher, T. R. (2002). Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry, 77, 23–41.CrossRefGoogle Scholar
  66. Rochelle-Newall, E. J., Delesalle, B., Mari, X., Rouchon, C., Torréton, J. P., & Pringault, O. (2008). Zinc induces shifts in microbial carbon flux in tropical coastal environments. Aquatic Microbial Ecology, 52(1), 57–68.CrossRefGoogle Scholar
  67. Rochelle-Newall, E. J., Chu, V. T., Pringault, O., Amouroux, D., Arfi, R., Bettarel, Y., et al. (2011). Phytoplankton diversity and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Marine Pollution Bulletin, 62, 2317–2329.CrossRefGoogle Scholar
  68. Rochelle-Newall, E., Hulot, F. D., Janeau, J. L., & Merroune, A. (2014). CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environmental Monitoring and Assessment, 186, 589–596. doi: 10.1007/s10661-013-3401-2.CrossRefGoogle Scholar
  69. Shannon, C., & Weaver, W. (1963). The mathematical theory of communication: Univ. of Illinois Press.Google Scholar
  70. Tas, S., Yilmaz, I. N., & Okus, E. (2009). Phytoplankton as an indicator of improving water quality in the Golden Horn Estuary. Estuaries and Coasts, 32(6), 1205–1224. doi: 10.1007/s12237-009-9207-3.CrossRefGoogle Scholar
  71. Taylor, F. (1976). Dinoflagellates from the International Indian Ocean Expedition—A report on material collected by the R.V."Anton Bruun 1963–1964". Stuttgart: Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller).Google Scholar
  72. Tomas, C. R. (1997). Identifying marine phytoplankton. San Diego: Academic Press Harcourt Brace & Company.Google Scholar
  73. Tran, D. T., & Dinh, V. H. (2004). Assessment of potentiality, utilization and management of wetland in the coastal area of Haiphong city (Project report). Haiphong, Vietnam: Institute of Marine Environment and Resources.Google Scholar
  74. Tran, D. T., & Dinh, V. H. (2005). Zoning and planning for alluvial soil utilization in the coastal area of Haiphong city (Project database). Haiphong, Vietnam: Institute of Marine Environment and Resources.Google Scholar
  75. Trinh, A. D., Meysman, F., Rochelle-Newall, E. J., & Bonnet, M.-P. (2012). Quantification of sediment water interactions in a polluted tropical river through biogeochemical modeling. Global Biogeochemical Cycles, 26, GB3010. doi: 10.1029/2010GB003963.CrossRefGoogle Scholar
  76. Truong, N. A. (1993). Taxonomy of marine diatoms in Vietnam. Hanoi, Vietnam: Science and Technics Publishing House.Google Scholar
  77. Truong, N. A., & Do, T. B. L. (1983). The occurrence of diatom Skeletonema costatum (Grev.) Cleve in the coastal waters of Haiphong. (Project Report). Haiphong, Vietnam: Institute of Marine Environment and Resources.Google Scholar
  78. Vörösmarty, C. J., & Loder, T. C. (1994). Spring-neap tidal contrasts and nutrient dynamics in a marsh-dominated estuary. Estuaries, 17(3), 537–551. doi: 10.2307/1352402.CrossRefGoogle Scholar
  79. Vu, T. T. (1994). Estuarine ecosystems of Vietnam. Hanoi, Vietnam: Science and Technics Publishing House.Google Scholar
  80. Vu, D. V., Ouillon, S., Tran, D. T., & La, V. C. (2014). Impact of the Hoa Binh Dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrology and Earth System Sciences Discussions, 11(1), 333–370. doi: 10.5194/hessd-11-333-2014.CrossRefGoogle Scholar
  81. Wood, E., Armstrong, F., & Richards, F. (1967). Determination of nitrate in seawater by cadmium copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom, 47, 23–31.CrossRefGoogle Scholar
  82. Xu, S. S., Song, J. M., Li, X. G., Yuan, H. M., Li, N., Duan, L. Q., et al. (2010). Changes in nitrogen and phosphorus and their effects on phytoplankton in the Bohai Sea. Chinese Journal of Oceanology and Limnology, 28(4), 945–952. doi: 10.1007/s00343-010-0005-3.CrossRefGoogle Scholar
  83. Yamagishi, T. (1992). Plankton algae in Taiwan (Formosa). Tokyo, Japan.: Uchida Rokakuho.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thuoc Van Chu
    • 1
  • Jean-Pascal Torréton
    • 2
    • 3
  • Xavier Mari
    • 2
    • 3
    • 5
  • Huyen Minh Thi Nguyen
    • 1
  • Kha Thi Pham
    • 1
  • Thu The Pham
    • 1
  • Thierry Bouvier
    • 2
  • Yvan Bettarel
    • 2
    • 3
  • Olivier Pringault
    • 2
    • 4
  • Corinne Bouvier
    • 2
  • Emma Rochelle-Newall
    • 2
    • 6
    Email author
  1. 1.Institute of Marine Environment and Resources (IMER)Vietnam Academy of Science and Technology (VAST)HaiphongViet Nam
  2. 2.Institut de Recherche pour le Développement (IRD), UMR 5119 ECOSYMMontpellierFrance
  3. 3.Institut de Recherche pour le Développement (IRD), UMR 5119 ECOSYMHanoiViet Nam
  4. 4.Institut de Recherche pour le Développement (IRD), UMR 5119 ECOSYMTunisTunisia
  5. 5.Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288MarseilleFrance
  6. 6.Institut de Recherche pour le Développement (IRD), UMR 7618 IEES-ParisParisFrance

Personalised recommendations