Environmental Monitoring and Assessment

, Volume 186, Issue 12, pp 8249–8265 | Cite as

Agricultural practices in grasslands detected by spatial remote sensing

  • Pauline Dusseux
  • Françoise Vertès
  • Thomas Corpetti
  • Samuel Corgne
  • Laurence Hubert-Moy
Article

Abstract

The major decrease in grassland surfaces associated with changes in their management that has been observed in many regions of the earth during the last half century has major impacts on environmental and socio-economic systems. This study focuses on the identification of grassland management practices in an intensive agricultural watershed located in Brittany, France, by analyzing the intra-annual dynamics of the surface condition of vegetation using remotely sensed and field data. We studied the relationship between one vegetation index (NDVI) and two biophysical variables (LAI and fCOVER) derived from a series of three SPOT images on one hand and measurements collected during field campaigns achieved on 120 grasslands on the other. The results show that the LAI appears as the best predictor for monitoring grassland mowing and grazing. Indeed, because of its ability to characterize vegetation status, LAI estimated from remote sensing data is a relevant variable to identify these practices. LAI values derived from the SPOT images were then classified based on the K-Nearest Neighbor (KNN) supervised algorithm. The results points out that the distribution of grassland management practices such as grazing and mowing can be mapped very accurately (Kappa index = 0.82) at a field scale over large agricultural areas using a series of satellite images.

Keywords

Grasslands Mowing Pasture Spectrometry Visible-infrared remote sensing Leaf Area Index 

References

  1. Arrouays, D., Deslais, W., & Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil Use and Management, 17(1), 7–11.CrossRefGoogle Scholar
  2. Asam, S., Fabritius, H., Klein, D., Conrad, C., & Dech, S. (2013). Derivation of leaf area index for grassland within alpine upland using multi-temporal rapid eye data. International Journal of Remote Sensing, 34(23), 8628–8652. doi:10.1080/01431161.2013.845316.CrossRefGoogle Scholar
  3. ASD. (2000). FieldSpec 3 portable spectroradiometer user’s guide. Colorado: Analytical Spectral Devices.Google Scholar
  4. Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.CrossRefGoogle Scholar
  5. Baret, F., Guyot, G., & Major, D. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of the 12th Canadian Symposium on Remote Sensing and IGARSS’89, Cairo, Egypt, vol 3, pp. 1355–1358.Google Scholar
  6. Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., & Leroy, M. (2007). LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm. Remote Sensing of Environment, 110(3), 275–286. doi:10.1016/j.rse.2007.02.018. URL http://www.sciencedirect.com.gate3.inist.fr/science/article/B6V6V-4NKJ1K0-1/2/29e421e7954752424d9bfbf9b697ca68.CrossRefGoogle Scholar
  7. Batáry, P., Báldi, A., & Erdõs, S. (2007). Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Biodiversity and Conservation, 16, 871–881.CrossRefGoogle Scholar
  8. Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., Hagolle, O., Marloie, O., Bertrand, N., Desfond, V., & Kzemipour, F. (2009). Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring. Remote Sensing of Environment, 113(4), 716–729. doi:10.1016/j.rse.2008.11.014. URL http://www.sciencedirect.com/science/article/pii/S0034425708003489.CrossRefGoogle Scholar
  9. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62(3):241–252, DOI 10.1016/S0034-4257(97)00104-1. http://www.sciencedirect.com/science/article/pii/S00344257970 01041
  10. Chen, J. M., & Black, T. A. (1991). Measuring leaf area index of plant canopies with branch architecture. Agricultural and Forest Meteorology, 57(1–3), 1–12.CrossRefGoogle Scholar
  11. Claverie, M., Vermote, E. F., Weiss, M., Baret, F., Hagolle, O., & Demarez, V. (2013). Validation of coarse spatial resolution LAI and FAPAR time series over cropland in southwest France. Remote Sensing of Environment, 139, 216–230. doi:10.1016/j.rse.2013.07.027. URL http://www.sciencedirect.com/science/article/pii/S0034425713002393.CrossRefGoogle Scholar
  12. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.CrossRefGoogle Scholar
  13. Corgne, S., Hubert-Moy, L., Barbier, J., & Solaiman, B. (2002). Follow-up and modeling of the land use in an intensive agricultural watershed in France. In: SPIE, 4879, Remote Sensing for Agriculture, Ecosystems, and Hydrology IV, pp. 342–351.Google Scholar
  14. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.CrossRefGoogle Scholar
  15. Darvishzadeh, R., Atzberger, C., Skidmore, A., & Schlerf, M. (2011). Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 894–906.CrossRefGoogle Scholar
  16. Dìaz, B. M., & Blackburn, G. A. (2003). Remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. International Journal of Remote Sensing, 24(1), 53–73. doi:10.1080/01431160305012.CrossRefGoogle Scholar
  17. Dusseux, P., Hubert-Moy, L., Lecerf, R., Corpetti, T., & Gong, X. (2011). Identification of grazed and mown grasslands using a time-series of high-spatial-resolution remote sensing images. In: 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Multitemp, Trento, Italy, pp. 145–148.Google Scholar
  18. Dusseux, P., Gong, X., Hubert-Moy, L., & Corpetti, T. (2014). Identification of grassland management practices from Lai time series. Journal of Applied Remote Sensing, In press.Google Scholar
  19. Duveiller, G., Weiss, M., Baret, F., & Defourny, P. (2011). Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sensing of Environment, 115(3), 887–896. doi:10.1016/j.rse.2010.11.016. URL http://www.sciencedirect.com/science/article/pii/S0034425710003354.CrossRefGoogle Scholar
  20. Edirisinghe, A., Hill, M. J., Donald, G. E., & Hyder, M. (2011). Quantitative mapping of pasture biomass using satellite imagery. International Journal of Remote Sensing, 32(10), 2699–2724. doi:10.1080/01431161003743181. URL http://www.tandfonline.com/doi/abs/10.1080/01431161003743181.CrossRefGoogle Scholar
  21. Feret, J., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P., Ustin, S. L., le Maire, G., & Jacquemoud, S. (2008). PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6), 3030–3043.CrossRefGoogle Scholar
  22. Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—a comparison with in situ measurements. Sensors, 8(4), 2833–2853.CrossRefGoogle Scholar
  23. Franke, J., Heinzel, V., & Menz, G. (2006). Assessment of NDVI—differences caused by sensor specific relative spectral response functions. In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS’06, pp 1138–1141. doi:10.1109/IGARSS.2006.294.
  24. Friedl, Michaelsen, J., Davis, F. W., Walker, H., & Schimel, D. S. (1994). Estimating grassland biomass and leaf area index using ground and satellite data. International Journal of Remote Sensing, 15, 1401–1420.CrossRefGoogle Scholar
  25. Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Penuelas, J., & Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5(1), 28–41.CrossRefGoogle Scholar
  26. Gao, F., Anderson, M. C., Kustas, W. P., & Wang, Y. (2012). Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. Journal of Applied Remote Sensing, 6(1), 063,554-1. doi:10.1117/1.JRS.6.063554.CrossRefGoogle Scholar
  27. Garrigues, S., Shabanov, N. V., Swanson, K., Morisette, J. T., Baret, F., & Myneni, R. B. (2008). Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 148(89), 1193–1209. doi:10.1016/j.agrformet.2008.02.014. URL http://www.sciencedirect.com/science/article/pii/S0168192308000683.CrossRefGoogle Scholar
  28. Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.CrossRefGoogle Scholar
  29. Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160. doi:10.3390/s8042136.CrossRefGoogle Scholar
  30. Griffith, J. A., Price, K. P., & Martinko, E. A. (2001). A multivariate analysis of biophysical parameters of tallgrass prairie among land management practices and years. Environmental Monitoring and Assessment, 68(3), 249–271.CrossRefGoogle Scholar
  31. Guo, X., Price, K. P., & Stiles, J. M. (2000). Biophysical and spectral characteristics of cool- and warm-season grasslands under three land management practices in eastern Kansas. Natural Resources Research, 9(4), 321–331.CrossRefGoogle Scholar
  32. Henebry, G. M. (1993). Detecting change in grasslands using measures of spatial dependence with landsat TM data. Remote Sensing of Environment, 46(2), 223–234.CrossRefGoogle Scholar
  33. Huete, A. R., Jackson, R. D., & Post, D. F. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 17(1), 37–53. doi:10.1016/0034-4257(85)90111-7. URL http://www.sciencedirect.com/science/article/pii/0034425785901117.CrossRefGoogle Scholar
  34. Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. doi:10.1016/S0034-4257(96)00112-5. URL http://www.sciencedirect.com/science/article/pii/S0034425796001125.CrossRefGoogle Scholar
  35. Huyghe, C., De Vliegher, A., Van Gils, B., & Peeters, A. (2014). Grasslands and herbivore production in Europe and effects of common policies.Google Scholar
  36. Jacquemoud, S., & Baret, F. (1990a). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91.CrossRefGoogle Scholar
  37. Jacquemoud, S., & Baret, F. (1990b). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34(2), 75–91. doi:10.1016/0034-4257(90)90100-Z. URL http://www.sciencedirect.com/science/article/pii/003442579090100Z.CrossRefGoogle Scholar
  38. Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G., Franois, C., & Ustin, S. (2009). PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment, 113(Supplement 1), S56–S66.CrossRefGoogle Scholar
  39. Jensen, J. R. (2000). Remote sensing of the environment: an earth resource perspective. Upper Saddle River: Prentice Hall.Google Scholar
  40. Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., & Zhang, X. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3), 366–378. doi:10.1016/j.rse.2006.01.003. URL http://www.sciencedirect.com/science/article/pii/S0034425706000290.CrossRefGoogle Scholar
  41. Lecerf, R., Corpetti, T., Hubert-Moy, L., Dubreuil, V. (2005). Monitoring land use and land cover changes in oceanic and fragmented landscapes with reconstructed MODIS time series. In: Third International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Multitemp, Biloxi, Mississippi USA, pp. 195–199.Google Scholar
  42. Lecerf, R., Hubert-Moy, L., Baret, F., Abdel-Latif, B., Corpetti, T., & Nicolas, H. (2008). Estimating biophysical variables at 250m with reconstructed EOS/MODIS time series to monitor fragment landscapes. In: IEEE Int. Geoscience and Remote Sensing Symp., IGARSS’08, Boston, USA, vol 2, pp. 954–957.Google Scholar
  43. Lefebvre, A., Corpetti, T., & Hubert-Moy, L. (2011). Ondelettes et thorie des vidences pour la classification oriente-objet. caractrisation et suivi des changements doccupation des sols de la mtropole de rennes. Revue Internationale de Gomatique, 21(3), 297–325. doi:10.3166/rig.21.297-325. URL http://rig.revuesonline.com/article.jsp?articleId=16563.CrossRefGoogle Scholar
  44. Lillesand, T., & Kiefer, R. (2000). Remote sensing and image interpretation, vol, edn. New York, USA.Google Scholar
  45. Lobell, D. B., & Field, C. B. (2007). Global scale climatecrop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014,002.CrossRefGoogle Scholar
  46. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, vol 6, pp. 281–297.Google Scholar
  47. Montandon, L. M., & Small, E. E. (2008). The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 112(4), 1835–1845. doi:10.1016/j.rse.2007.09.007. URL http://www.sciencedirect.com/science/article/pii/S0034425707004245.CrossRefGoogle Scholar
  48. Moreau, P., Ruiz, L., Mabon, F., Raimbault, T., Durand, P., Delaby, L., Devienne, S., & Verts, F. (2012). Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agriculture, Ecosystems & Environment, 147, 89–99.CrossRefGoogle Scholar
  49. Peeters, A. (2009). Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland Science, 55(3), 113–125.CrossRefGoogle Scholar
  50. Poudevigne, I., & Alard, D. (1997). Landscape and agricultural patterns in rural areas: a case study in the Brionne basin, Normandy, France. Journal of Environmental Management, 50(4).Google Scholar
  51. Price, J. (1994). How unique are spectral signatures? Remote Sensing of Environment, 49(3), 181–186.CrossRefGoogle Scholar
  52. Price JC (1998) An approach for analysis of reflectance spectra. Remote Sensing of Environment 64(3):316–330, DOI 10.1016/S0034-4257(98)00008-X. http://www.sciencedirect.com.gate3.inist.fr/science/article/B 6V6V-3V7SDNY-7/2/7242d4a9268104198d28dedbd8422f21
  53. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.CrossRefGoogle Scholar
  54. Rouse, J., Haas, R., Schell, J., Deering, D., & Harlan, J. (1974) Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type III, Final report Greenbelt, MD, Etats-Unis, 371 p.Google Scholar
  55. Soudani, K., François, C., le Maire, G., Le Dantec, V., & Dufrêne, E. (2006). Comparative analysis of IKONOS, SPOT, and ETM + data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102(12), 161–175. doi:10.1016/j.rse.2006.02.004. URL http://www.sciencedirect.com/science/article/pii/S0034425706000733.CrossRefGoogle Scholar
  56. Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: the sail model. Remote Sensing of Environment, 16(2), 125–141.CrossRefGoogle Scholar
  57. Vermote, E., Tanre, D., Deuze, J., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.CrossRefGoogle Scholar
  58. Vertès, F., Hatch, D., Velthof, G., Taube, F., Laurent, F., Loiseau, P., & Recous, S. (2007). Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations. In: Permanent and temporary grassland: Plant, Environment and Economy, 14th symposium of the European Grassland Federation Ghent, A. de Vliegler and L. Carlier, (eds.), Grassland Science in Europe, pp 227–246.Google Scholar
  59. Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478. doi:10.1016/j.rse.2011.08.010.CrossRefGoogle Scholar
  60. Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2005). Relations between NDVI, grassland production, and crop yield in the central Great Plains. Geocarto International, 20(3), 5–11.CrossRefGoogle Scholar
  61. Wei, X. (2010). Biomass estimation: a remote sensing approach. Geography Compass, 4(11), 16351647.CrossRefGoogle Scholar
  62. Weiss, M., & Baret, F. (2010) CAN-EYE V6.1 User Manual. EMMAH, INRA.Google Scholar
  63. Weiss, M., Baret, F., Myneni, R. B., Pragnère, A., & Knyazikhin, Y. (2000). Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie, 20(1), 3–22.CrossRefGoogle Scholar
  64. Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination: part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1–2), 37–53.CrossRefGoogle Scholar
  65. Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the western corn belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences, 110(10), 4134–4139. doi:10.1073/pnas.1215404110. URL http://www.pnas.org/content/110/10/4134.CrossRefGoogle Scholar
  66. Wu J, Wang D, Bauer ME (2007) Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research 102(1):33–42, DOI 10.1016/j.fcr.2007.01.003. http://www.sciencedirect.com/science/article/pii/S03784290070 00160
  67. Zhang, C., & Guo, X. (2008). Monitoring northern mixed prairie health using broadband satellite imagery. International Journal of Remote Sensing, 29(8), 2257–2271.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pauline Dusseux
    • 1
  • Françoise Vertès
    • 2
  • Thomas Corpetti
    • 1
  • Samuel Corgne
    • 1
  • Laurence Hubert-Moy
    • 1
  1. 1.Laboratoire LETG Rennes COSTEL, UMR CNRS 6554Université Rennes 2Rennes CedexFrance
  2. 2.UMR INRA-Agrocampus 1069 SASQuimperFrance

Personalised recommendations