Environmental Monitoring and Assessment

, Volume 186, Issue 11, pp 7245–7257 | Cite as

Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet

  • Mohammad BehbahaniEmail author
  • Nasim Akbari Ghareh Tapeh
  • Mojtaba Mahyari
  • Ali Reza Pourali
  • Bahareh Golrokh Amin
  • Ahmad Shaabani


We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L−1 for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g−1. The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8–100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.


Amine-functionalized graphene oxide Food and water samples Solid phase extraction Preconcentration Heavy metals 


  1. Abdullin, I. F., Turova, E. N., & Budnikov, G. K. (2000). Determination of copper and cadmium by atomic absorption spectrometry with electrochemical and sorption preconcentration. Journal of Analytical Chemistry, 55, 567–569.CrossRefGoogle Scholar
  2. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: a review of graphene. Chemical Reviews, 110, 132–145.CrossRefGoogle Scholar
  3. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.CrossRefGoogle Scholar
  4. Banks, C. E., Crossley, A., Salter, C., & Wilkins, S. J. (2006). Compton RG, carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angewandte Chemie International Edition, 45, 2533–2537.CrossRefGoogle Scholar
  5. Bazzi, A., Kreuz, B., Wuokila, J., & Maqboul, A. (2005). Separation and determination of Cr(III) and Cr(VI) with cation-exchange chromatography and atomic absorption spectroscopy. An experiment for quantitative methods of analysis. Journal of Chemical Education, 82, 435–438.CrossRefGoogle Scholar
  6. Behbahani, M., Bagheri, A., Taghizadeh, M., Salarian, M., Sadeghi, O., Adlnasab, L., & Jalali, K. (2013a). Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra traceamounts of lead ions from vegetables, rice, and fish samples. Food Chemistry, 138, 2050–2056.CrossRefGoogle Scholar
  7. Behbahani, M., Salarian, M., Amini, M. M., Sadeghi, O., Bagheri, A., & Bagheri, S. (2013b). Application of a new functionalized nanoporous silica for simultaneous trace separation and determination of Cd(II), Cu(II), Ni(II), and Pb(II) in food and agricultural products, Food Anal. Methods, 6, 1320–1329.Google Scholar
  8. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351–355.CrossRefGoogle Scholar
  9. Chakrapani, G., Mahanta, P. L., Murty, D. S. R., & Gomathy, B. (2001). Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta, 53, 1139–1147.CrossRefGoogle Scholar
  10. Chang, H. X., Tang, L. H., Wang, Y., Jiang, J. H., & Li, J. H. (2010). Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry, 82, 2341–2346.CrossRefGoogle Scholar
  11. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.CrossRefGoogle Scholar
  12. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.CrossRefGoogle Scholar
  13. Jak, P. K., Patel, S., & Mishra, B. K. (2004). Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta, 62, 1005–1028.CrossRefGoogle Scholar
  14. Jimenez-Soto, J. M., Cardenas, S., & Valcarcel, M. (2009). Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction. Journal of Chromatography A, 1216, 5626–5633.CrossRefGoogle Scholar
  15. Kobayashi, J. (1994). Preconcentration analysis of trace ionic compounds in the environment. Bunseki Kagaku, 43, 727–728.CrossRefGoogle Scholar
  16. Krishna, P. G., Gladis, J. M., Rambabu, U., Rao, T. P., & Naidu, G. R. K. (2004). Preconcentrative separation of chromium(VI) species from chromium(III) by coprecipitation of its ethyl xanthate complex onto naphthalene. Talanta, 63, 541–546.CrossRefGoogle Scholar
  17. Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.CrossRefGoogle Scholar
  18. Lemos, V. A., Santos, M. S., Santos, E. S., Santos, M. J. S., dos Santos, W. N. L., Souza, A. S., de Jesus, D. S., das Virges, C. F., Carvalho, M. S., Oleszczuk, N., Vale, M. G. R., Welz, B., & Ferreira, S. L. C. (2007). Application of polyurethane foam as a sorbent for trace metal preconcentration—a review. Spectrochimica Acta, Part B, 62, 4–12.CrossRefGoogle Scholar
  19. Liang, P., Shi, T., & Li, J. (2004). Separation/preconcentration and FAAS determination of trace Zn and Cd on water sample. International Journal of Environmental and Analytical Chemistry, 843, 15–321.Google Scholar
  20. Liu, Q., Shi, J. B., Zeng, L. X., Wang, T., Cai, Y. Q., & Jiang, G. B. (2011). Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. Journal of Chromatography A, 121, 8197–8204.Google Scholar
  21. Lu, C. H., Yang, H. H., Zhu, C. L., Chen, X., & Chen, G. N. (2009). A graphene platform for sensing biomolecules. Angewandte Chemie International Edition, 48, 4785–4787.CrossRefGoogle Scholar
  22. Miró, M., Estela, J. M., & Cerdà, V. (2004). Application of flowing stream techniques to water analysis—part III: metal ions: alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis. Talanta, 63, 201–223.CrossRefGoogle Scholar
  23. Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 217–224.CrossRefGoogle Scholar
  24. Pumera, M., & Miyahara, Y. (2009). What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Nanoscale, 1, 260–265.CrossRefGoogle Scholar
  25. Rao, T. P., Praven, R. S., & Daniel, S. (2004). Styrene-divinyl benzene copolymers: synthesis, characterization, and their role in inorganic trace analysis. Critical Reviews in Analytical Chemistry, 34, 177–193.CrossRefGoogle Scholar
  26. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., & Govindaraj, A. (2009). New two-dimensional nanomaterial. Angewandte Chemie International Edition, 48, 7752–7777.CrossRefGoogle Scholar
  27. Saito, K., Taninaka, J., Murakami, S., & Muromatsu, A. (1998). Extraction behaviour of copper(II) and silver(I) with a thiacrown ether carboxylic acid, 2-(3,6,10,13-tetrathiacyclotetradec-1-oxy) hexanoic acid. Talanta, 46, 1187–1194.CrossRefGoogle Scholar
  28. Saracoglu, S., Soylak, M., Elci, L., & Dogan, M. (2002). Determination of Cu, Fe, Ni, Co, Pb, Cd, Mn and Cr in natural water samples after solid phase extraction on chromosorb 102. Analytical Letters, 35, 2603–2616.CrossRefGoogle Scholar
  29. Shamspur, T., & Mostafavi, A. (2009). Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). Journal of Hazardous Materials, 168, 1548–1553.CrossRefGoogle Scholar
  30. Shan, C. S., Yang, H. F., Song, J. F., Han, D. X., Ivaska, A., & Niu, L. (2009). Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 81, 2378–2382.CrossRefGoogle Scholar
  31. Soylak, M., & Dogan, M. (1996). Column preconcentration of trace amounts of copper on activated carbon from natural water samples. Analytical Letters, 29, 635–643.CrossRefGoogle Scholar
  32. Soylak, M., Narin, I., & Dogan, M. (1997). Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column. Analytical Letters, 30, 2801–2810.CrossRefGoogle Scholar
  33. Soylak, M., Elci, L., & Dogan, M. (2001). Solid phase extraction of trace metal ions with amberlite XAD resins prior to atomic absorption spectrometric analysis. Journal of Trace and Microprobe Techniques, 19, 329–344.CrossRefGoogle Scholar
  34. Soylak, M., Erdogan, N. D., & Elci, L. (2004). Membrane filtration of iron(III), copper(II) and lead(II) ions as 1-(2-pyridylazo) 2-naphtol (PAN) for their preconcentration and atomic absorption determinations. Chinese Journal of Chemistry, 51, 703–706.Google Scholar
  35. Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8, 3498–3502.CrossRefGoogle Scholar
  36. Tuzen, M., Aydemir, E., & Sari, H. (2002). Investigation of some physical and chemical parameters in the river Yesilirmak in Tokat region. Turke Fresenius Environmental Bulletin, 11, 202–207.Google Scholar
  37. Vallant, R. M., Szabo, Z., Bachmann, S., Bakry, R., Najam-ul-Haq, M., Rainer, M., Heigl, N., Petter, C., Huck, C. W., & Bonn, G. K. (2007). Development and application of C60-fullerene bound silica for solid-phase extraction of biomolecules. Analytical Chemistry, 79, 8144–8153.CrossRefGoogle Scholar
  38. Watcharotone, S., Dikin, D. A., Stankovich, S., Piner, R., Jung, I., Dommett, G. H. B., Evmenenko, G., Wu, S. E., Chen, S. F., Liu, C. P., Nguyen, S. T., & Ruoff, R. S. (2007). Graphene-silica composite thin films as transparent conductors. Nano Letters, 718, 88–1892.Google Scholar
  39. Wen, X., Wu, P., Chen, L., & Hou, X. (2009). Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 650, 33–38.CrossRefGoogle Scholar
  40. Zhang, K., Zhang, L. L., Zhao, X. S., & Wu, J. S. (2010). Graphene/polyaniline nanofibers composites as supercapacitor electrodes. Chemistry of Materials, 22, 1392–1401.CrossRefGoogle Scholar
  41. Zhu, S., Niu, W., Li, H., Han, S., & Xu, G. (2009). Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample. Talanta, 79, 1441–1445.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohammad Behbahani
    • 1
    Email author
  • Nasim Akbari Ghareh Tapeh
    • 2
  • Mojtaba Mahyari
    • 1
  • Ali Reza Pourali
    • 2
  • Bahareh Golrokh Amin
    • 1
  • Ahmad Shaabani
    • 1
  1. 1.Department of ChemistryShahid Beheshti UniversityTehranIran
  2. 2.Faculty of ChemistryDamghan UniversityDamghanIran

Personalised recommendations