Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 8, pp 4891–4903 | Cite as

Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia

  • O. SracekEmail author
  • M. Mihaljevič
  • B. Kříbek
  • V. Majer
  • J. Filip
  • A. Vaněk
  • V. Penížek
  • V. Ettler
  • B. Mapani
Article

Abstract

The mine tailings at Kombat, in semiarid northeastern Namibia, were investigated by the combination of solid-phase analyses, mineralogical methods, leaching tests, and speciation modeling. Dissolution of the most abundant primary sulfides, chalcopyrite and galena, released copper and lead which were adsorbed onto ferric oxyhydroxides or precipitated in the form of malachite, Cu2CO3(OH)2, and cerussite, PbCO3, respectively. Arsenic released from arsenopyrite was incorporated into ferric oxyhydroxides. Based on sequential extraction and 57Fe Mössbauer spectroscopy, a large amount of ferric iron is present as low solubility hematite and goethite formed rapidly (<10 years) under warm semiarid climatic conditions, and arsenic in these phases is relatively tightly bound. It seems that Cu and especially Pb in carbonate minerals represent a more serious environmental risk. Immobilization of As in hematite has implications for other mining sites in regions with similar climatic conditions because this process results in long-term immobilization of As.

Keywords

Mine tailings Namibia Neutralization Arsenic Hematite 

Notes

Acknowledgments

Funding for this study was provided by the Czech Science Foundation (GAČR P210/12/1413), and Ministry of Education, Youth and Sports of the Czech Republic (MSM0021620855). The authors also acknowledge the support by the Operational Program Research and Development for Innovations—European Development Fund (CZ.1.05/2.1.00/03.0058) of the Ministry of Education, Youth and Sports of the Czech Republic. This study was carried out within the framework of the IGCP Project No. 594 (“Assessment of impact of mining and mineral processing on the environment and human health in Africa”). We thank two anonymous reviewers, whose comments helped to improve the manuscript.

References

  1. Blowes, D. W., Jambor, J. L., Hanton-Fong, C. J., Lortie, L., & Gould, W. D. (1998). Geochemical, mineralogical and microbiological characterization of a sulphide-bearing, carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Applied Geochemistry, 13(6), 687–705.CrossRefGoogle Scholar
  2. Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.), Environmental geochemistry, treatise on geochemistry (Vol. 9, pp. 149–204). Oxford: Elsevier.CrossRefGoogle Scholar
  3. Bothe, J. V., & Brown, P. W. (1999). The stabilities of calcium arsenates at 23 ± 1 °C. Journal of Hazardous Materials, 69, 197–207.CrossRefGoogle Scholar
  4. Catalano, J. G., Zhang, Z., Park, C., Fentner, P., & Bedzyk, M. J. (2007). Bridging arsenate surface complexes on the hematite (012) surface. Geochimica et Cosmochimica Acta, 71, 1883–1897.CrossRefGoogle Scholar
  5. Deane, J. G. (1995) The structural evolution of the Kombat deposits, Otavi Mountainland, Namibia, Communications of the Geological Survey of Namibia 10, 99–107.Google Scholar
  6. Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189.CrossRefGoogle Scholar
  7. Dokoupilová P, Sracek O, Losos Z. (2009). Geochemical behaviour and mineralogical transformations during spontaneous combustion of a coal waste pile in Oslavany, Czech Republic. Mineral. Mag. 71: 443–460.Google Scholar
  8. Dold, B. (2010). Basic concepts in environmental geochemistry of sulfidic mine-waste management. In E. S. Kumar (Ed.), Waste management (pp. 173–198). Croatia: INTECH.Google Scholar
  9. Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration, 74, 3–55.CrossRefGoogle Scholar
  10. Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V., & Sebek, O. (2011). Tracing the spatial distribution and mobility of metal/metalloid contaminants in the vicinity of the Nkana copper smelter, Copperbelt, Zambia. Geoderma, 164, 73–84.CrossRefGoogle Scholar
  11. Flakova, R., Zenisova, Z., Sracek, O., Krcmar, D., Ondrejkova, I., Chovan, M., et al. (2012). The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environmental Earth Sciences, 66, 1043–1057.CrossRefGoogle Scholar
  12. Gieré, R., Sidenko, N. V., & Lazareva, E. V. (2003). The role of secondary minerals in controlling t he migration of arsenic and metals from high-sulphide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.CrossRefGoogle Scholar
  13. Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141, 575–580.CrossRefGoogle Scholar
  14. Hossner, L. R., & Doolittle, J. L. (2003). Iron sulfidic oxidation as influenced by calcium carbonate application. Journal of Environmental Quality, 32, 773–780.CrossRefGoogle Scholar
  15. International Organization for Standardization. (1995). ISO 11466. Soil quality: extraction of trace elements soluble in Aqua regia. ISO, Geneva, Switzerland.Google Scholar
  16. Jambor, J. L. (2003). Mine-waste mineralogy and mineralogical perspectives on acid–base accounting. In Jambor, J. L., Blowes, D. W., Ritchie, A. I. M. (Eds.), Environmental Aspects of Mine Wastes. Short Course Series, vol. 31 (pp. 117–145). Mineralogical Association of Canada.Google Scholar
  17. Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact. Elements, 7, 381–386.CrossRefGoogle Scholar
  18. Kamona, A. F., & Gűnzel, A. (2007). Stratigraphy and base metal mineralization in the Otavi Mountain Land, Northern Namibia-a review and regional interpretation. Gondwana Research, 11, 396–413.CrossRefGoogle Scholar
  19. Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice Hall. 600 p.Google Scholar
  20. Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4.2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70, 2942–2956.CrossRefGoogle Scholar
  21. Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32, 2383–2388.CrossRefGoogle Scholar
  22. McGregor, R. G., & Blowes, D. W. (2002). The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings. Journal of Geochemical Exploration, 76, 195–207.CrossRefGoogle Scholar
  23. Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., et al. (2010). Effects of soil composition on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44, 2667–2674.CrossRefGoogle Scholar
  24. Nicholson, R. V., Gillham, R. W., & Reardon, E. J. (1990). Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta, 54, 395–402.CrossRefGoogle Scholar
  25. Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry, 26(11), 1777–1791.CrossRefGoogle Scholar
  26. Nordstrom, D. K., & Alpers, C. N. (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountains superfund site, California. National Academy of Sciences, 96, 3455–3462.CrossRefGoogle Scholar
  27. Ondruš, P., & Skála, R. (1997). New quasi-empirical channel Search/Match algorithm for ICDD PDF2 Database: A tool for qualitative phase analysis integrated in the ZDS-system software package for X-ray powder diffraction analysis, Fifth European Powder Diffraction Conference EPDIC-5, Parma, 193 pp.Google Scholar
  28. Parkhurst, D. L., & Appelo, C. A. J. (1999). Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Water-Resources Investigations Report 99–4259, U.S. Geological Survey.Google Scholar
  29. Prucek, R., Tuček, J., Kolařík, J., Filip, J., Marušák, Z., Sharma, V. K., et al. (2013). Ferrate(VI)-induced arsenite and arsenate removal by in-situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environmental Science and Technology, 47, 3283–3292.Google Scholar
  30. Rauret G., Lopez-Sanchez J.F., Sahuquillo A., Rubio R., Davidson C., Ure A., Quevauviller P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit. 1, 57–61.Google Scholar
  31. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution, global synthesis. Chichester: Wiley-Blackwell. 588 p.CrossRefGoogle Scholar
  32. Romero, F. M., Armienta, M. A., Villasenor, G., & Gonzáles, J. L. (2006). Mineralogical constraints on the mobility of arsenic in tailings from Zimapán, Hidalgo, Mexico. International Journal of Environment and Pollution, 26, 23–40.CrossRefGoogle Scholar
  33. Romero, F. M., Armienta, M. A., & Gonzales-Hernandez, G. (2007). Solid phase control on the potential mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Applied Geochemistry, 22(1), 109–127.CrossRefGoogle Scholar
  34. Salzsauler, K. A., Sidenko, N. V., & Sherriff, B. L. (2005). Arsenic mobility in alteration products of sulphide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314.CrossRefGoogle Scholar
  35. Singh, D. B., Prasad, G., & Rupainwar, D. C. (1996). Adsorption technique for treatment of As(V)-rich effluents. Colloids and Surfaces A, 111, 49–56.CrossRefGoogle Scholar
  36. Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & von Brömssen, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19(2), 169–180.CrossRefGoogle Scholar
  37. Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V., & Veselovský, F. (2010a). Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. Journal of African Earth Sciences, 57, 14–30.CrossRefGoogle Scholar
  38. Sracek, O., Veselovský, F., Kříbek, B., Malec, J., & Jehlička, J. (2010b). Geochemistry, mineralogy and environmental impact of precipitated efflorescent salts at the Kabwe Cu- Co chemical leaching plant in Zambia. Applied Geochemistry, 25, 1815–1824.CrossRefGoogle Scholar
  39. Whiting, K. S. (1992). The thermodynamics and geochemistry of as with the application to subsurface waters at the Sharon steel superfund site midvale, Utah. MSc thesis, Colorado School of Mines.Google Scholar
  40. Žák, T., & Jirásková, Y. (2006). CONFIT: Mössbauer spectra fitting program. Surface and Interface Analysis, 38, 710–714.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • O. Sracek
    • 1
    Email author
  • M. Mihaljevič
    • 2
  • B. Kříbek
    • 3
  • V. Majer
    • 3
  • J. Filip
    • 4
  • A. Vaněk
    • 5
  • V. Penížek
    • 5
  • V. Ettler
    • 2
  • B. Mapani
    • 6
  1. 1.Department of Geology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Institution of Geochemistry, Mineralogy and Natural Resources, Faculty of ScienceCharles UniversityPrahaCzech Republic
  3. 3.Czech Geological SurveyPrahaCzech Republic
  4. 4.Regional Center of Advanced Technologies and Materials, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  5. 5.Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesPrahaCzech Republic
  6. 6.University of NamibiaWindhoekNamibia

Personalised recommendations