Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 7, pp 4431–4442 | Cite as

Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence

  • Aida Bani
  • Guillaume Echevarria
  • Emmanuelle Montargès-Pelletier
  • Fran Gjoka
  • Sulejman Sulçe
  • Jean Louis Morel
Article

Abstract

This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg−1 in the surface of soil I (upslope) to 95.9 mg kg−1 in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.

Keywords

Serpentine soil Bioavailability Soil mineralogy Alyssum murale Hyperaccumulation 

Notes

Acknowledgments

This work was supported by the French Embassy in Tirana who provided a grant to Prof. Aida Bani for her PhD and by the French National Research Agency through the national “Investissements d’avenir” programme, reference ANR-10-LABX-21 (LABEX RESSOURCES21).

References

  1. AFNOR. (2004). Evaluation de la qualité des Sols (Vol. 1 & 2). France: AFNOR, Saint-Denis. 461pp & 486 pp.Google Scholar
  2. Alexander, E. B. (2004). Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains. California. International Geology Review, 46, 754–764.CrossRefGoogle Scholar
  3. Antic-Mladenovic, S., Rinklebe, J., Frohne, T., Stärk, H.-J., Wennrich, R., Tomic, Z., et al. (2011). Impact of controlled redox conditions on nickel in a serpentine soil. Journal Soils and Sediments, 11, 406–415.CrossRefGoogle Scholar
  4. Bani, A., Echevarria, G., Sulçe, S., Morel, J. L., & Mullai, A. (2007). In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant and Soil, 293, 79–89.CrossRefGoogle Scholar
  5. Bani, A., Echevarria, G., Mullaj, A., Reeves, R., Morel, J. L., & Sulçe, S. (2009). Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeastern Naturalist, 16, 385–404.CrossRefGoogle Scholar
  6. Bani A., Echevarria G., Sulçe S., Morel J.L. (2014) Improving the agronomy of Alyssum murale for extensive phytomining: A five-year field study. Int J Phytoremediation.Google Scholar
  7. Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., & Herbillon, A. J. (2006). Sources of trace metals in ferralsols in New Caledonia. European Journal of Soil Science, 57, 200–213.CrossRefGoogle Scholar
  8. Bonifacio, E., & Barberis, E. (1999). Phosphorus dynamics during pedogenesis on serpentinite. Soil Science, 164, 960–968.CrossRefGoogle Scholar
  9. Bonifacio, E., Zanini, E., Boero, V., & Franchini-Angela, M. (1997). Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma, 75, 33–51.CrossRefGoogle Scholar
  10. Brooks, R.R. (1987). Serpentine and Its Vegetation, Dudley, T.R. (Ed.), Discorides, Portland, OR. 454 pp.Google Scholar
  11. Caillaud, J., Proust, D., Righi, D., & Martin, F. (2004). Fe-rich clays in a weathering profile developed from serpentinite. Clays and Clay Minerals, 52, 779–791.CrossRefGoogle Scholar
  12. Caillaud, J., Proust, D., Philippe, S., Fontaine, C., & Fialin, M. (2009). Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma, 149, 199–208.CrossRefGoogle Scholar
  13. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429.Google Scholar
  14. Chardot, V., Massoura, S. T., Echevarria, G., Reeves, R. D., & Morel, J. L. (2005). Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. International Journal of Phytoremediation, 7, 323–335.CrossRefGoogle Scholar
  15. Chardot, V., Echevarria, G., Gury, M., Massoura, S., & Morel, J. L. (2007). Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant and Soil, 293, 7–21.CrossRefGoogle Scholar
  16. Cheng, C. H., Jien, S. H., Iizuka, Y., Tsai, H., Chang, Y. H., & Hseu, Z. Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75, 659–668.CrossRefGoogle Scholar
  17. Coleman, R. G., & Jove, C. (1991). Geological origin of serpentinites. In A. J. M. Baker (Ed.), The vegetation of ultramafic (serpentine) soils: proceedings of the first international conference on serpentine ecology (pp. 1–17). Andover, Hampshire, UK: Intercept.Google Scholar
  18. D’Amico, M. E., & Previtali, F. (2012). Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant and Soil. doi: 10.1007/s11104-011-0932-6.Google Scholar
  19. Dilek, Y., & Furnes, H. (2009). Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113, 1–20.CrossRefGoogle Scholar
  20. Ece, O. I., Coban, F., Gungor, N., & Suner, F. (1999). Clay mineralogy and occurrence of ferrian smectites between serpentinite saprolites and basalts in biga peninsula, northwest turkey. Clays and Clay Minerals, 47, 241–251.CrossRefGoogle Scholar
  21. Echevarria, G., Morel, J. L., Fardeau, J. C., & Leclerc-Cessac, E. (1998). Assessment of phytoavailability of nickel in soils. Journal of Environmental Quality, 27, 1064–1070.Google Scholar
  22. Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry, 25 (3), 643–651.Google Scholar
  23. Garnier, J., Quantin, C., Echevarria, G., & Becquer, T. (2009). Assessing chromate availability in tropical ultramafic soils using isotopic exchange kinetics. Journal Soils and Sediments, 9, 468–475.CrossRefGoogle Scholar
  24. Gjoka, F., Felix-Henningsen, P., Wegener, H.-R., Salillari, I., & Beqiraj, A. (2011). Heavy metals in soils from Tirana (Albania). Environmental Monitoring and Assessment, 172, 517–527.CrossRefGoogle Scholar
  25. Istok, J. D., & Harward, M. D. (1982). Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Science Society of America Journal, 46, 1106–1108.CrossRefGoogle Scholar
  26. IUSS Working Group WRB. (2006). World reference base for soil resources, world soil resources reports (103). Rome: FAO.Google Scholar
  27. Jaffré, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579–580.CrossRefGoogle Scholar
  28. Kierczak, J., Néel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.CrossRefGoogle Scholar
  29. Lee, B. D., Graham, R. C., Laurent, T. E., Amrhein, C., & Creasy, R. M. (2001). Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of America Journal, 65, 1183–1196.CrossRefGoogle Scholar
  30. Lee, B. D., Sears, S. K., Graham, R. C., Amrhein, C., & Vali, H. (2003). Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Science Society of America Journal, 67, 1309–1317.CrossRefGoogle Scholar
  31. Lee, B. D., Graham, R. C., Laurent, T. E., & Amrhein, C. (2004). Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma, 118 (3–4), 303–320.Google Scholar
  32. Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.CrossRefGoogle Scholar
  33. Manika, K. (1994). Pétrologie du massif ophiolitique de Shebenik (Albanie). PhD Dissertation, Université de Paris-Sud Orsay (in French).Google Scholar
  34. Massoura, S. T., Echevarria, G., Leclerc-Cessac, E., & Morel, J. L. (2004). Response of excluder, indicator and hyperaccumulator plants to nickel availability in soils. Aust. J. Soil Research, 42, 933–938.CrossRefGoogle Scholar
  35. Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J. L. (2006). Nickel bearing phases and availability in natural and anthropogenic soils. Geoderma, 136, 28–37.CrossRefGoogle Scholar
  36. McCahon, T. J., & Munn, L. C. (1991). Soils developed in late Pleistocene till, medicine Bow mountains. Wyoming Soil Science, 152, 377–388.CrossRefGoogle Scholar
  37. McKeague, J. J., & Day, J. A. (1966). Dithionite and oxalate extractable Fe and Al as aids in differentiating different classes of soils. Canadian Journal of Soil Science, 46, 13–22.CrossRefGoogle Scholar
  38. Mehra, O. P., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. In A. Swineford (Ed.), Proceedings of the 7th Nat (pp. 317–342). Elmsdorf, NY: Conf. Clay Minerals. Pergamon Press.Google Scholar
  39. O’Hanley, D. S. (1996). Serpentinites: records of tectonic and petrological history. In Oxford monographs on geology and geophysics. New York: Oxford University Press. 277 pp.Google Scholar
  40. Proctor, J., & Woodell, S. R. J. (1975). The ecology of serpentine soils. Advances in Ecological Research, 9, 255–365.CrossRefGoogle Scholar
  41. Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., et al. (2013). Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma, 192, 111–119.CrossRefGoogle Scholar
  42. Tang, Y. T., Deng, T. H. B., Wu, Q. H., Qiu, R. L., Wei, Z. B., Guo, X. F., et al. (2012). Designing cropping systems adapted to metal contaminated sites: a review. Pedosphere, 22, 470–488.CrossRefGoogle Scholar
  43. World Reference Base for soil resources (2006) World Soil Resources Reports No. 103. FAO, Rome.Google Scholar
  44. Whittaker, R. H. (1954). The ecology of serpentine soils: a symposium. I. Introduction. Ecological, 35, 258–259.Google Scholar
  45. Zdruli, P. (1997). Benchmark Soils of Albania: Resource Assessment for Sustainable Land Use. PhD. thesis. Published by the USDA Natural Resources Conservation Service (NRCS), Washington DC and the International Fertilizer Development Center (IFDC), Muscle Shoals, AL. 2 Volumes. pp. 293.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aida Bani
    • 1
    • 2
    • 3
  • Guillaume Echevarria
    • 2
    • 3
  • Emmanuelle Montargès-Pelletier
    • 4
  • Fran Gjoka
    • 1
  • Sulejman Sulçe
    • 1
  • Jean Louis Morel
    • 2
    • 3
  1. 1.Agro-Environmental Department, Faculty of Agronomy and EnvironmentAgricultural University of TiranaKoder-KamezAlbania
  2. 2.Laboratoire Sols et EnvironnementUniversité de LorraineVandœuvre lès NancyFrance
  3. 3.Laboratoire Sols et EnvironnementVandœuvre lès NancyFrance
  4. 4.Laboratoire Interdisciplinaire des Environnements ContinentauxUniversité de Lorraine-CNRSVandœuvre lès NancyFrance

Personalised recommendations