Environmental Monitoring and Assessment

, Volume 186, Issue 7, pp 4181–4193 | Cite as

Chlorophyll and suspended sediment mapping to the Caribbean Sea from rivers in the capital city of the Dominican Republic using ALOS AVNIR-2 data

  • Yuji Sakuno
  • Esteban R. Miño
  • Satoshi Nakai
  • Hidemi Mutsuda
  • Tetsuji Okuda
  • Wataru Nishijima
  • Rolando Castro
  • Amarillis García
  • Rosanna Peña
  • Marcos Rodríguez
  • G. Conrado Depratt
Article
  • 214 Downloads

Abstract

This study aims to study the distribution of contaminants in rivers that flow into the Caribbean Sea using chlorophyll-a (Chl-a) and suspended sediment (SS) as markers and ALOS AVNIR-2 satellite sensor data. The Haina River (HN) and Ozama and Isabela Rivers (OZ-IS) that flow through the city of Santo Domingo, the capital of the Dominican Republic, were chosen. First, in situ spectral reflectance/Chl-a and SS datasets obtained from these rivers were acquired in March 2011 (case A: with no rain influence) and June 2011 (case B: with rain influence), and the estimation algorithm of Chl-a and SS using AVNIR-2 data was developed from the datasets. Moreover, the developed algorithm was applied to AVNIR-2 data in November 2010 for case A and August 2010 for case B. Results revealed that for Chl-a and SS estimations under cases A and B conditions, the reflectance ratio of AVNIR-2 band 4 and band 3 (AV4/AV3) and the reflectance of AVNIR-2 band 4 (AV4) were effective. The Chl-a and SS mapping results obtained using AVNIR-2 data corresponded with the field survey results. Finally, an outline of the distribution of contaminants at the mouth of the river that flows into the Caribbean Sea was obtained for both rivers in cases A and B.

Keywords

Caribbean Sea ALOS AVNIR-2 Chlorophyll Suspended sediment 

Notes

Acknowledgment

We would like to thank to Mr. Peter Szabo for collaboration on the survey. We would also like to thank the staff of the Environmental Department of the Municipality of Santo Domingo East and the Institute of Chemistry of UASD for their collaboration during the analysis of the samples. This study was supported in part by JSPS KAKENHI (23404001 and 20332801).

References

  1. APHA, WWA, & WEF (1998). Standard methods for the examination of water and wastewater, 5–13.Google Scholar
  2. Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M., McAllister, D., & Caddy, J. (2001). Pilot analysis of global ecosystems: coastal ecosystems. Washington, DC: World Resources Institute.Google Scholar
  3. Carpenter, D., & Carpenter, S. (1983). Modeling inland water quality using Landsat data. Remote Sensing of Environment, 13, 345–352.CrossRefGoogle Scholar
  4. Dall'Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., & Holz, J. C. (2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96(2), 176–187.CrossRefGoogle Scholar
  5. De La Fuente, S. (1976). Geografía Dominicana (pp. 235–236). Dominican Republic: Editora Colegial Quisqueyana, Santo Domingo.Google Scholar
  6. Dekker, A., Vos, R., & Peters, S. (2001). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214.CrossRefGoogle Scholar
  7. Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129, 295–308.CrossRefGoogle Scholar
  8. Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W., Carder, K. L., Clark, D. K., Evans, R. H., Hoge, F. E., & Gordon, H. R. (1998). An overview of MODIS capabilities for ocean science observations. Geoscience and Remote Sensing, IEEE Transactions, 36(4), 1250–1265.CrossRefGoogle Scholar
  9. Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 109, 464–472.CrossRefGoogle Scholar
  10. Gurlin, D., Gitelson, A. A., & Moses, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters? Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115, 3479–3490.CrossRefGoogle Scholar
  11. Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics, 12, 555–563.CrossRefGoogle Scholar
  12. Han, L. (1997). Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogrammetric Engineering and Remote sensing, 63, 701–705.Google Scholar
  13. Kaewmanee, M., Choomnoommanee, T. & Fraisse, R. (2007). Thailand earth observation system: mission and products. Revue française de photogrammétrie et de télédétection, 12–18.Google Scholar
  14. Kaul, B., & Mukerjee, H. (1999). Elevated blood lead and erythrocyte protoporphyrin levels of children near a battery-recycling plant in Haina, Dominican Republic. International Journal of Occupational and Environmental Health, 5(4), 307–312.CrossRefGoogle Scholar
  15. Lathrop, R. G., Lillesand, T. M., & Yandell, B. S. (1991). Testing the utility of simple multi-date thematic mapper calibration algorithms for monitoring turbid inland waters. International Journal of Remote Sensing, 12, 2045–2063.CrossRefGoogle Scholar
  16. Letelier, R. M., & Abbott, M. R. (1996). An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 58, 215–223.CrossRefGoogle Scholar
  17. MacFarlane, N., & Robinson, I. (1984). Atmospheric correction of Landsat MSS data for a multidate suspended sediment algorithm. International Journal of Remote Sensing, 5, 561–576.CrossRefGoogle Scholar
  18. Mertes, L. A. K., Smith, M. O., & Adams, J. B. (1993). Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images. Remote Sensing of Environment, 43, 281–301.CrossRefGoogle Scholar
  19. Miño, E. R. A., Sakuno, Y., Nakai, S., Mutsuda, H., Okuda, T., Nishijima, W., Castro, R., Garcia, A., Peña, R., Rodriguez, M., & Depratt, C. G. (2011). Pollution loading to the Caribbean Sea from rivers in the capital city of The Dominican Republic. Proceedings of Japan Society of Civil Engineers, 67, 41–45.Google Scholar
  20. Murakami, H., Tadono, T., & Shimada, M. (2007). Radiometric cross calibration of AVNIR-2 and MODIS using directional functions of top-of-atmosphere reflectance. Journal of the Remote Sensing Society of Japan, 27, 354–362 (in Japanese with English abstract).Google Scholar
  21. Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2013). Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254–265.CrossRefGoogle Scholar
  22. Prieur, L., & Sathyendranath, S. (1981). An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnology and Oceanography, 26(4), 671–689.CrossRefGoogle Scholar
  23. Ragadera, R., Cruz, A. & Delgado, G. (2001). Characterization of the planktonic communities of the Santo Domingo coast, Dominican Republic, and their relationship with major polluting sources. Revista cubana de investigaciones pesqueras Google Scholar
  24. Rawlins, B., Ferguson, A., Chilton, P., Arthurton, R., Rees, J., & Baldock, J. (1998). Review of agricultural pollution in the Caribbean with particular emphasis on small island developing states. Marine Pollution Bulletin, 36, 658–668.CrossRefGoogle Scholar
  25. Sakuno, Y., Kanno, A., & Koibuchi, Y. (2010). Simultaneous Estimation of SS and Chlorophyll in shallow water through remote sensing. Journal of Japan Society of Civil Engineers, B2(Coastal Engineering), 66, 1026–1030. in Japanese with English abstract.CrossRefGoogle Scholar
  26. Shahidul, I. M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48, 624–649.CrossRefGoogle Scholar
  27. Taylor, E. B. (2009). From el campo to el barrio: Memory and social imaginaries in Santo Domingo. Identities: Global Studies in Culture and Power, 16, 157–178.CrossRefGoogle Scholar
  28. Tebbs, E., Remedios, J., & Harper, D. (2013). Remote sensing of chlorophyll- a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106.CrossRefGoogle Scholar
  29. Thiemann, S., & Kaufmann, H. (2002). Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany. Remote Sensing of Environment, 81, 228–237.CrossRefGoogle Scholar
  30. Villasol, A., Alepuz, M. & Beltrán, J. (1998). Integrated management of bays and coastal zones in the wider Caribbean region: Facts and needs. Proceeding of ITMEMS 1998, 192–205.Google Scholar
  31. Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. Science of the Total Environment, 328, 195–206.CrossRefGoogle Scholar
  32. Wang, J., Lu, X., & Zhou, Y. (2007). Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+. Chinese Science Bulletin, 52(2), 273–280.CrossRefGoogle Scholar
  33. Wang, J. J., Lu, X. X., Liew, S. C., & Zhou, Y. (2009). Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and Landforms, 34, 1082–1092.CrossRefGoogle Scholar
  34. Yacobi, Y. Z., Moses, W. J., Kaganovsky, S., Sulimani, B., Leavitt, B. C., & Gitelson, A. A. (2011). NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Research, 45, 2428–2436.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuji Sakuno
    • 1
  • Esteban R. Miño
    • 2
  • Satoshi Nakai
    • 3
  • Hidemi Mutsuda
    • 1
  • Tetsuji Okuda
    • 4
  • Wataru Nishijima
    • 4
  • Rolando Castro
    • 5
  • Amarillis García
    • 6
  • Rosanna Peña
    • 6
  • Marcos Rodríguez
    • 6
  • G. Conrado Depratt
    • 6
  1. 1.Department of Transportation and Environmental Systems, Graduate School of EngineeringHiroshima UniversityHiroshimaJapan
  2. 2.Institute for Sustainable Sciences and DevelopmentHiroshima UniversityHiroshimaJapan
  3. 3.Department of Chemical Engineering, Graduate School of EngineeringHiroshima UniversityHiroshimaJapan
  4. 4.Environmental Research and Management CenterHiroshima UniversityHiroshimaJapan
  5. 5.Department of Environment, Municipality of Santo Domingo EastSanto DomingoDominican Republic
  6. 6.Institute of Chemistry, Faculty of SciencesSanto Domingo Autonomous UniversitySanto DomingoDominican Republic

Personalised recommendations