Environmental Monitoring and Assessment

, Volume 186, Issue 7, pp 4081–4096 | Cite as

Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA

  • Andrew M. Ray
  • Christopher A. Mebane
  • Flint Raben
  • Kathryn M. Irvine
  • Amy M. Marcarelli
Article

Abstract

We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte–epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte–epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.

Keywords

Nutrient bioassay Lemna minor Aquatic epiphytes Duckweed Macrophytes Eutrophication 

Supplementary material

10661_2014_3682_MOESM1_ESM.docx (68 kb)
ESM 1(DOCX 67 kb)

References

  1. Allan, J. D., & Castillo, M. M. (2007). Stream ecology: Structure and function of running waters. The Netherlands: Springer.CrossRefGoogle Scholar
  2. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association, American Water Works Association, and Water Environment Federation.Google Scholar
  3. Baker, J. H., & Orr, D. R. (1986). Distribution of epiphytic bacteria on freshwater plants. Journal of Ecology, 74, 155–165.CrossRefGoogle Scholar
  4. Baker, J. H., & Farr, I. S. (1987). Importance of dissolved organic matter produced by duckweed (Lemna minor) in a Southern English river. Freshwater Biology, 17, 325–330.CrossRefGoogle Scholar
  5. Beardall, J., Young, E., & Roberts, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44–69.CrossRefGoogle Scholar
  6. Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. (2012). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnology and Oceanography, 57, 1544–1554.CrossRefGoogle Scholar
  7. Carpenter, S. R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77, 677–680.CrossRefGoogle Scholar
  8. Carpenter, S. R., & Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341–370.CrossRefGoogle Scholar
  9. Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian Prairie river. Freshwater Biology, 39, 525–536.CrossRefGoogle Scholar
  10. Clarke, S. J. (2002). Vegetation growth in rivers: Influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26, 159–172.CrossRefGoogle Scholar
  11. Drenner, R. W., Mazumder, A., Carpenter, S. R., & Huston, M. A. (1999). Microcosm experiments have limited relevance for community and ecosystem ecology: Comments and reply. Ecology, 80, 1081–1089.CrossRefGoogle Scholar
  12. Eriksson, P. G., & Weisner, S. E. B. (1999). An experimental study on the effects of submerged macrophytes on nitrification and denitrification in ammonium-rich aquatic ecosystems. Limnology and Oceanography, 44, 1993–1999.CrossRefGoogle Scholar
  13. Fitzgerald, G. P. (1969). Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. Journal of Phycology, 5, 351–359.CrossRefGoogle Scholar
  14. Güsewell, S., & Koerselman, W. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, 5, 37–61.CrossRefGoogle Scholar
  15. Hilton, J., O’Hare, M. T., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment, 365, 66–83.CrossRefGoogle Scholar
  16. Hooper, F. F. (1969). Eutrophication indices and their relation to other indices of ecosystem change. In Review of eutrophication: Causes, consequences, correctives. Proceedings from a Symposium (pp. 225–235). Washington DC: National Academy of Sciences Publication 1700.Google Scholar
  17. Hopkins, J. M., Marcarelli, A. M., & Bechtold, H. A. (2011). Ecosystem structure and function are complementary measures of water quality in a polluted, spring-influenced river. Water, Air, & Soil Pollution, 214, 409–421.CrossRefGoogle Scholar
  18. Les, D. H., Crawford, D. J., Landolt, E., Gabel, J. D., & Kimball, R. T. (2002). Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany, 27, 221–240.Google Scholar
  19. Lin, H.-J., Nixon, S. W., Taylor, D. I., Granger, S. L., & Buckley, B. A. (1996). Responses of epiphytes on eel grass, Zostera marina L., to separate and combined nitrogen and phosphorus enrichment. Aquatic Botany, 52, 243–258.CrossRefGoogle Scholar
  20. Linton, S., & Goulder, R. (1998). The duckweed Lemna minor compared with the algal Selensastrum capricornutum for bioassay of pond-water richness. Aquatic Botany, 60, 27–36.CrossRefGoogle Scholar
  21. Madsen, J. D., & Adams, M. S. (1988). The seasonal biomass and productivity of the submerged macrophytes in a polluted Wisconsin stream. Freshwater Biology, 20, 41–50.CrossRefGoogle Scholar
  22. Marcarelli, A. M., & Wurtsbaugh, W. A. (2009). Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry, 94, 95–110.CrossRefGoogle Scholar
  23. Marcarelli, A. M., Rugenski, A. T., Bechtold, H. A., & Inouye, R. S. (2009). Nutrient limitation of biofilm biomass and metabolism in the Upper Snake River basin, southeast Idaho, USA. Hydrobiologia, 620, 63–76.CrossRefGoogle Scholar
  24. Mebane, C. A., Simon, N. S., & Maret, T. R. (2013). Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia, 722, 143–158. doi:10.1007/s10750-013-1693-4.CrossRefGoogle Scholar
  25. Miller, W. E, Greene, J. C., & Shiroyama, T. (1978). The Selenastrum capricornutum Printz algal assay bottle test. Experimental design, application and data interpretation protocol. U.S. Environmental Protection Agency, EPA-600/9-78-018.Google Scholar
  26. Millican, J. S., Back, J. A., & McFarland, A. M. S. (2008). Nutrient bioassays of growth parameters for algae in the North Bosque River of Central Texas. Journal of the American Water Resources Association, 44, 1219–1230.CrossRefGoogle Scholar
  27. Minshall, G. W., & Andrews, D. A. (1973). An ecological investigation of the Portneuf River, Idaho: A semiarid-land stream subjected to pollution. Freshwater Biology, 3, 1–30.CrossRefGoogle Scholar
  28. Mkandawire, M., Taubert, B., & Dudel, E. G. (2006). Limitation of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability. Ecotoxicology and Environmental Safety, 65, 118–128.CrossRefGoogle Scholar
  29. Mkandawire, M., Teixeira da Silva, J. A., & Dudel, E. G. (2013). The Lemna bioassay: contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Critical Reviews in Environmental Science and Technology, 44, 154–197. doi:10.1080/10643389.2012.710451.CrossRefGoogle Scholar
  30. Neckles, H. A., Wetzel, R. L., & Orth, R. J. (1993). Relative effects of nutrient enrichment and grazing on epiphyte–macrophyte (Zostera marina L.) dynamics. Oecologia, 93, 285–295.CrossRefGoogle Scholar
  31. Onaindia, M., Amexaga, I., Garbisu, C., & García-Bikuña, B. (2005). Aquatic macrophytes as biological indicators of environmental conditions of rivers in North-Eastern Spain. Annales de Limnologie – International Journal of Limnology, 41, 175–182.CrossRefGoogle Scholar
  32. Pelton, D. K., Levine, S. N., & Braner, M. (1998). Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using 32P in stream microcosms. Freshwater Biology, 39, 285–299.CrossRefGoogle Scholar
  33. Penning, W. E., Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, et al. (2008). Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology, 42, 237–251.CrossRefGoogle Scholar
  34. R Development Core Team. (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.r-project.org. Accessed 14 March 2012.
  35. Radić, S., Stipaničev, D., Cvjetko, P., Marijanović Rajčić, M., Širac, S., Pevalek-Kozlina, et al. (2011). Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and Environmental Safety, 74, 182–187.CrossRefGoogle Scholar
  36. Ramsey, F. L., & Schafer, D. W. (2002). The statistical sleuth. A course in methods of data analysis. Pacific Grove: Duxbury Press.Google Scholar
  37. Ray, A. M. (2010). Portneuf River total maximum daily load revision and addendum. Idaho Department of Environmental Quality. http://www.epa.gov/waters/tmdldocs/portneuf_river_revision_addendum_final.pdf. Accessed 3 October 2013.
  38. Sand-Jensen, K., & Borum, J. (1991). Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany, 41, 137–175.CrossRefGoogle Scholar
  39. Santamaría, L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 23, 137–154.CrossRefGoogle Scholar
  40. Schindler, D. W. (1998). Replication versus realism: The need for ecosystem-scale experiments. Ecosystems, 1, 323–334.CrossRefGoogle Scholar
  41. Sengupta, S., Medda, C., & Dewanji, A. (2010). The impact of duckweed on water quality in sub-tropical ponds. Environmentalist, 30, 353–360.CrossRefGoogle Scholar
  42. Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100, 179–196.CrossRefGoogle Scholar
  43. Soranno, P. A., Cheruvelil, K. S., Stevenson, R. J., Rollins, S. L., Holden, S. W., Heaton, S., et al. (2008). A framework for developing ecosystem-specific nutrient criteria: Integrating biological thresholds in predictive modeling. Limnology and Oceanography, 53, 773–787.CrossRefGoogle Scholar
  44. Spivak, A. C., Vanni, M. J., & Mette, E. M. (2011). Moving on up: Can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology, 56, 279–291.CrossRefGoogle Scholar
  45. Szabó, S., Braun, M., & Borics, G. (1999). Elemental flux between algae and duckweeds (Lemna gibba) during competition. Archiv für Hydrobiologie, 146, 355–367.Google Scholar
  46. Taraldsen, J. E., & Norberg-King, T. J. (1990). New method for determining effluent toxicity using duckweed (Lemna minor). Environmental Toxicology and Chemistry, 9, 761–767.CrossRefGoogle Scholar
  47. Underwood, A. J. (1995). Toxicological testing in laboratories is not ecological testing of toxicology. Human and Ecological Risk Assessment, 1, 178–182.CrossRefGoogle Scholar
  48. USEPA. (2000). Nutrient criteria technical guidance manual: Rivers and streams. U.S. Environmental Protection Agency, EPA-822-B-00-002. http://www.epa.gov/waterscience/criteria/nutrient/guidance/rivers/index.html. Accessed 3 October 2013.
  49. USEPA. (2013). National summary of impaired waters and TMDL information. U.S. Environmental Protection Agency. http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T. Accessed 3 October 2013.
  50. Vadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. (2002). Putting the lake back together: Reintegrating benthic pathways into lake food web models. Bioscience, 52, 44–54.CrossRefGoogle Scholar
  51. Wang, W. C. (1990). Literature review on duckweed toxicity testing. Environmental Research, 52, 7–22.CrossRefGoogle Scholar
  52. Wang, W. C., & Freemark, K. (1995). The use of plants for environmental monitoring and assessment. Ecotoxicology and Environmental Safety, 30, 289–301.CrossRefGoogle Scholar
  53. Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. San Diego: Academic Press.Google Scholar
  54. Williams, S. L., & Ruckleshaus, M. H. (1993). Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology, 74, 904–918.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2014

Authors and Affiliations

  • Andrew M. Ray
    • 1
    • 5
  • Christopher A. Mebane
    • 2
  • Flint Raben
    • 1
  • Kathryn M. Irvine
    • 3
  • Amy M. Marcarelli
    • 1
    • 4
  1. 1.Department of Biological Sciences, Center for Ecological Research and EducationIdaho State UniversityPocatelloUSA
  2. 2.U.S. Geological SurveyBoiseUSA
  3. 3.U.S. Geological SurveyBozemanUSA
  4. 4.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA
  5. 5.National Park ServiceGreater Yellowstone NetworkBozemanUSA

Personalised recommendations