Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 6, pp 3875–3890 | Cite as

Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation

  • Abdessalem OmriEmail author
  • Mourad Benzina
Article

Abstract

In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon–Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.

Keywords

Almond shell activated carbon Adsorption Breakthrough Photocatalysis Phenol 

Notes

Acknowledgments

We are grateful to the Ministry of Higher Education and Scientific Research for the financial support to the current work.

References

  1. Abdessalem, O., Ahmed, W., & Mourad, B. (2012). Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: equilibrium, kinetic and thermodynamic studies. Arab. J. Chem.. doi: 10.1016/j.arabjc.2012.04.047.Google Scholar
  2. Abdessalem, O., Mourad, B., & Najwa, A. (2013a). Preparation, modification and industrial application of activated carbon from almond shell. J. Ind. Eng. Chem., 19(6), 2092–2099.Google Scholar
  3. Abdessalem, O., Mourad, B., Wassim, T., & Najwa, A. (2013b). Adsorptive removal of humic acid on activated carbon prepared from almond shell: approach for the treatment of industrial phosphoric acid solution. Desalin. Water Treat., 1–12.Google Scholar
  4. Akbal, F., & Onar, A. N. (2003). Photocatalytic degradation of phenol. Environ. Monit. Assess., 83(3), 295–302.CrossRefGoogle Scholar
  5. Aksu, Z., & Gonen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem., 39(5), 599–613.CrossRefGoogle Scholar
  6. Antonio, D. M., Marianna, I., Paul, D. P., Danielle, R., Hassan, K. O., & Michele, A. (2013). Adsorption of phenols from olive oil waste waters on layered double hydroxide, hydroxyaluminium-iron-co-precipitate and hydroxyaluminium-iron-montmorillonite complex. Appl. Clay Sci., 80, 154–161.Google Scholar
  7. Ao, Y., Xu, Fu, J. D., Shen, X., & Yuan, C. (2008). Low temperature preparation of anatase TiO2-coated activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2-3), 125–130.CrossRefGoogle Scholar
  8. Arbuj, S. S., Hawaldar, R. R., Mulik, U. P., Wani, B. N., Amalnerkar, D. P., & Waghmode, S. B. (2010). Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater. Sci. Eng. B, 168(1–3), 90–94.CrossRefGoogle Scholar
  9. Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2012). Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci., 7, 4871–4888.Google Scholar
  10. Babu, B.V., & Gupta, S. (2004). Modeling and simulation for dynamic of packed bed adsorption. Proceedings of International Symposium & 57th Annual session of IIChE in Association with AIChE (CHEMCON-2004), Mumbai, December 27–30.Google Scholar
  11. Babu, B. V., & Gupta, S. (2005). Modeling and simulation of fixed bed adsorption column: effect of velocity variation. J. Eng. Technol., 1, 60–66.Google Scholar
  12. Baetz, R. L., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and us photocatalysis. Chemosphere, 35(3), 585–596.CrossRefGoogle Scholar
  13. Banat, F. A., Al-Bashir, B., Al-Asheh, S., & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environ. Pollut., 107(3), 391–398.CrossRefGoogle Scholar
  14. Barrera, A., Tzompantzi, F., Padilla, J. M., Casillas, J. E., Jácome-Acatitla, G., Cano, M. E., & Gómez, R. (2014). Reusable PdO/Al2O3–Nd2O3 photocatalysts in the UV photodegradation of phenol. Appl. Catal. B Environ., 144, 362–368.CrossRefGoogle Scholar
  15. Bódalo, A., Gómez, E., Hidalgo, A. M., Gómez, M., Murcia, M. D., & López, I. (2009). Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination, 245(1–3), 680–686.CrossRefGoogle Scholar
  16. Bohart, G. S., & Adams, E. Q. (1920). Behavior of charcoal towards chlorine. J. Chem. Soc., 42, 523–529.CrossRefGoogle Scholar
  17. Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., & Montiel, A. (2008). A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J. Hazard. Mater., 152(2), 838–845.CrossRefGoogle Scholar
  18. Calace, N., Nardi, E., Petronio, B. M., & Pietroletti, M. (2002). Adsorption of phenols by paper mill sludges. Environ. Pollut., 118(3), 315–319.CrossRefGoogle Scholar
  19. Chu, K. H. (2004). Improved fixed-bed models for metal biosorption. Chem. Eng. J., 97(2–3), 233–239.CrossRefGoogle Scholar
  20. Cornelia, P., Georgeta, M., Adriana, P., Simona, G. M., & Robert, I. (2013). Adsorption of phenol and p-chlorophenol from aqueous solutions on poly (styrene-co-divinylbenzene) functionalized materials. Chem. Eng. J., 222, 218–227.CrossRefGoogle Scholar
  21. Daneshvar, N., Salari, D., & Khataee, A. R. (2003). photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem., 157(1), 111–116.CrossRefGoogle Scholar
  22. Derylo-Marczewska, A., Marczewski, A. W., Winter, S., & Sternik, D. (2010). Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes-mesoporous carbons. Appl. Surf. Sci., 256(17), 5164–5170.CrossRefGoogle Scholar
  23. Duan, X., Ma, F., Yuan, Z., Jin, L. X., & Yuan, Z. (2013). Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J. Taiwan. Inst. Chem. Eng., 44(1), 95–102.CrossRefGoogle Scholar
  24. Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res., 36(4), 1034–1042.CrossRefGoogle Scholar
  25. Fang, H. H. P., & Chan, O. C. (1997). Toxicity of phenol towards anaerobic biogranules. Water Res., 31(9), 2229–2242.CrossRefGoogle Scholar
  26. Gülensoy, H. (1984). Kompleksometrenin esaslarıve kompleksometrik titrasyonlar (pp. 76–77). İstanbul: Fatih Yayınevi Matbaası.Google Scholar
  27. Gupta, V. K., Ali, I., & Saini, V. K. (2004). Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci Technol., 38(14), 4012–4018.CrossRefGoogle Scholar
  28. Khan, A. R., Al-Bahri, T. A., & Al-Haddad, A. (1997). Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. Water Res., 31(8), 2102–2112.CrossRefGoogle Scholar
  29. Knop, A., & Pilato, L. A. (1985). Phenolic resins—Chemistry, Applications and Performance. Berlin: Springer.Google Scholar
  30. Ko, D. C., Porter, J. F., & McKay, G. (2001). Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res, 35(16), 3876–3886.CrossRefGoogle Scholar
  31. Li, Y., Li, L., Li, C., Chen, W., & Zeng, M. (2012). Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity. Appl. Catal. A Gen., 427, 1–7.CrossRefGoogle Scholar
  32. Liao, H. T., & Shian, C. Y. (2000). Analytical solution to an axial dispersion model for the fixed-bed adsorber. AIChE J, 46(6), 1168–1176.CrossRefGoogle Scholar
  33. Lin, S. H., Chiou, C. H., Chang, C. K., & Juang, R. S. (2011). Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J. Environ. Manag., 92(12), 3098–3104.CrossRefGoogle Scholar
  34. Liu, S. X., Chen, X. Y., & Chen, X. (2007). A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater., 143(1–2), 143–263.Google Scholar
  35. Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Appl. Catal. B Environ., 103(1–2), 246–252.CrossRefGoogle Scholar
  36. Matos, J., Laine, J., Herrmann, J. M., Uzcategui, D., & Brito, J. L. (2007). Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl. Catal. B Environ., 70(1–4), 461–469.CrossRefGoogle Scholar
  37. Mourad, B., & Bellagi, A. (1990). Détermination des propriétés du réseau poreux de matériau argileux par les techniques d’adsorption d’azote et de porosimétrie au mercure en vue de leur utilisation pour la récupération des gaz. Ann. Chim., 15, 315–335.Google Scholar
  38. Munesh, S., & Meena, R. C. (2012). Photocatalytic degradation of textile dye through an alternative photocatalyst methylene blue immobilized resin dowex 11 in presence of solar light. Arch. Appl. Sci. Res., 4(1), 472–479.Google Scholar
  39. Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley.Google Scholar
  40. Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater., 89(2–3), 303–317.CrossRefGoogle Scholar
  41. Ozkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater., 129(1–3), 158–163.CrossRefGoogle Scholar
  42. Smith, E. H., & Amini, A. (2000). Lead removal in fixed beds by recycled iron material. J. Environ. Eng., 12, 58–65.CrossRefGoogle Scholar
  43. Spurr, R. A., & Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem., 29(5), 760–762.CrossRefGoogle Scholar
  44. Toyoda, M., Nanbu, Y., Nakazawa, Y., Hirano, M., & Inagaki, M. (2004). Effect of crystallinity of anatase on photoactivity for methylene blue decomposition in water. Appl. Catal. B Environ., 49(4), 227–232.CrossRefGoogle Scholar
  45. Tsai, W. T., Lee, M. K., Su, T. Y., & Chang, Y. M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater., 168(1), 269–275.CrossRefGoogle Scholar
  46. Velasco, L. F., Parra, J. B., & Ania, C. O. (2010). Role of activated carbon features on the photocatalytic degradation of phenol. Appl. Surf. Sci., 256(17), 5254–5258.CrossRefGoogle Scholar
  47. Vijayaraghavan, K., Jegan, J., Palanivelu, & Velan, K. M. (2004). Removal of nickel (II) ions from aqueous solution using crab shell particles in a packed bed up flow column. J. Hazard. Mater., 113(1–3), 223–230.CrossRefGoogle Scholar
  48. Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., & Wen, Z. (2009a). A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci., 255(7), 3953–3958.CrossRefGoogle Scholar
  49. Wang, X., Liu, Y., Hu, Z., Chen, Y., Liu, W., & Zhao, G. (2009b). Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J. Hazard. Mater., 169(1–3), 1061–1067.CrossRefGoogle Scholar
  50. Wang, Z., Chen, Y., Zhou, C., Whiddon, R., Zhang, Y., Zhou, J., & Cen, K. (2011a). Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production. Int. J. Hydrog. Energy, 36(1), 216–223.CrossRefGoogle Scholar
  51. Wang, B., Li, Q., Wang, W., Li, Y., & Zhai, J. (2011b). Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl. Surf. Sci., 257(8), 3473–3479.CrossRefGoogle Scholar
  52. Yan, G., & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour. Technol., 78(3), 243–249.CrossRefGoogle Scholar
  53. Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J., 45(8), 509–516.CrossRefGoogle Scholar
  54. Youji, L., Xiaoming, Z., Wei, C., Leiyong, L., Mengxiong, Z., Shidong, Q., & Shuguo, S. (2012). Photodecolorization of rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. J. Hazard. Mater., 227, 25–33.Google Scholar
  55. Yu, J., Yu, G. H. G. B., Cheng, Z., X, J., Yu, J. C., & Ho, W. K. (2003). The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B, 107(5), 13871–13879.CrossRefGoogle Scholar
  56. Yu, J., Zhou, M., Cheng, B., & Zhao, X. (2006). Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J. Mol. Catal. A Chem., 246(1–2), 176–184.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory of Water-Energy-Environment (LR3E), code: AD-10-02, National School of Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations