Environmental Monitoring and Assessment

, Volume 186, Issue 6, pp 3415–3429 | Cite as

Metal release from serpentine soils in Sri Lanka

  • Meththika Vithanage
  • Anushka Upamali Rajapaksha
  • Christopher Oze
  • Nishanta Rajakaruna
  • C. B. Dissanayake


Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify “elemental pools,” indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168 ± 6.40 mg kg−1 via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg−1 (Yudhaganawa) in the organic fraction and 49 mg kg−1 (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg−1 in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.


Chemical extractions Natural attenuation Labile toxic metals Serpentine geoecology EPMA 



International Foundation for Science (Sweden) and Organization for the Prohibition of Chemical Weapons, The Hague, are kindly acknowledged for their funding (grant number W/5068-1). Authors thank Dr. J.C. Bailey at the Institute for Geography and Geology, University of Copenhagen and Dr. Steen Christensen and colleagues at the Department of Earth Sciences, University of Aarhus, Denmark for providing XRF results and Prof. Y. S. Ok at the Department of Biological Environment at Kangwon National University, South Korea for EPMA analysis.


  1. Alexander, E. B. (2004). Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. International Geology Review, 46(8), 754–764.CrossRefGoogle Scholar
  2. Alves, S., Trancoso, M. A., Gonçalves, M. d. L. S., & Correia dos Santos, M. M. (2011). A nickel availability study in serpentinised areas of Portugal. Geoderma, 164(3–4), 155–163.Google Scholar
  3. Amir, H., & Pineau, R. (2003). Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Canadian Journal of Microbiology, 49(4), 288–293.CrossRefGoogle Scholar
  4. Armienta, M. A., Rodríguez, R., Ceniceros, N., Juárez, F., & Cruz, O. (1996). Distribution, origin and fate of chromium in soils in Guanajuato, Mexico. Environmental Pollution, 91(3), 391–397.CrossRefGoogle Scholar
  5. Aydinalp, C., & Katkat, A. V. (2004). The comparison of extraction methods for evaluating some heavy metals in polluted soils. Plant Soil Environment, 50(5), 212–217.Google Scholar
  6. Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301(1–3), 251–261.CrossRefGoogle Scholar
  7. Boyd, R. S., Kruckeberg, A. R., & Rajakaruna, N. (2009). Biology of ultramafic rocks and soils: research goals for the future. Northeastern Naturalist, 16(5), 422–440.CrossRefGoogle Scholar
  8. Brooks, R. R. (1987). Serpentine and its vegetation: a multidisciplinary approach. Portland: Dioscorides.Google Scholar
  9. Camachoa, J. R., & Armientac, M. A. (2000). Natural chromium contamination of groundwater at Leo’n Valley, Mexico. Journal of Geochemical Exploration, 68, 167–181.CrossRefGoogle Scholar
  10. Castilho, P. D., & Rix, I. (1993). Ammonium acetate extraction for soil heavy metal speciation; model aided soil test interpretation. International Journal of Environmental Analytical Chemistry, 51(1–4), 59–64.CrossRefGoogle Scholar
  11. Cheng, C.–. H., Jien, S.–. H., Iizuka, Y., Tsai, H., Chang, Y.–. H., & Hseu, Z.-Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75(2), 659–668.CrossRefGoogle Scholar
  12. Coleman, R. G. (1977). Ophiolites: ancient oceanic lithosphere? Berlin: Springer.CrossRefGoogle Scholar
  13. Coleman, R. G., & Jove, C. (1992). Geological origin of serpentinites. In: A. J. M. Baker, J. Proctor, & R. D. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils. Proceedings of the First International Conference on Serpentine Ecology (pp. 1–17). Hampshire: Intercept.Google Scholar
  14. Cooray, P. G. (1984). An introduction to the geology of Sri Lanka (Ceylon). Colombo: National Museums of Sri Lanka.Google Scholar
  15. Dissanayaka, C. B. (1982). The geology and geochemistry of the Uda Walawe serpentinite. Sri Lanka. Journal National Science Council Sri Lanka, 10, 13–34.Google Scholar
  16. Dissanayake, C. B., & Van Riel, B. J. (1978). The petrology and geochemistry of a recently discovered nickeliferous serpentinite from Sri Lanka. Journal of the Geological Society of India, 19, 464–471.Google Scholar
  17. Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry, 25(3), 643–651.CrossRefGoogle Scholar
  18. Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67(1–2), 55–71.CrossRefGoogle Scholar
  19. Gasser, U. G., & Dahlgren, R. A. (1994). Solid-phase speciation and surface association of metals in serpentinitic soils. Soil Science and Plant Nutrition, 158, 409–420.Google Scholar
  20. Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6–7), 451–467.CrossRefGoogle Scholar
  21. Gough, L. P., Meadows, G. R., Jackson, L. L., & Dudka, S. (1989). Biogeochemistry of highly serpentinized chromite rich ultramafic area, Tehma County, California. USGS Bulletin, 1901.Google Scholar
  22. Gupta, S. K., & Aten, C. (1993). Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. International Journal of Environmental Analytical Chemistry, 51(1–4), 25–46.CrossRefGoogle Scholar
  23. Harris, T., & Rajakaruna, N. (2009). Adiantum viridimontanum, Aspidotis densa, Minuartia marcescens, and Symphyotrichum rhiannon: additional serpentine endemics from Eastern North America. Northeastern Naturalist, 16(sp5), 111–120.CrossRefGoogle Scholar
  24. Harrison, S., & Kruckeberg, A. R. (2008). Garden on the rocks. Natural History, 117, 40–44.Google Scholar
  25. Harrison, S., & Rajakaruna, N. (2011). Serpentine: the evolution and ecology of a model system. Berkeley: University of California Press.Google Scholar
  26. Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of the Total Environment, 178, 21–28.CrossRefGoogle Scholar
  27. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.Google Scholar
  28. Kashem, M. A., Singh, B. R., Kondo, T., Imamul Huq, S. M., & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. International Journal Environmental Science Technology, 4(2), 169–176.CrossRefGoogle Scholar
  29. Kukier, U., Peters, C. A., Chaney, R. L., Angle, J. S., & Roseberg, R. J. (2004). The effect of pH on metal accumulation in two alyssum species. Journal of Environmental Quality, 33(6), 2090–2102.CrossRefGoogle Scholar
  30. Langmuir, D. (1997). Aqueous environmental geochemistry. Englewood Cliffs: Prentice Hall.Google Scholar
  31. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.CrossRefGoogle Scholar
  32. McGrath, S. P. (1995). Chromium and nickel. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 152–174). London: Blackie Academic and Professional.CrossRefGoogle Scholar
  33. Mogollón, J. L., Pérez-Diaz, A., & Lo Monaco, S. (2000). The effects of ion identity and ionic strength on the dissolution rate of a gibbsitic bauxite. Geochimica et Cosmochimica Acta, 64(5), 781–795.CrossRefGoogle Scholar
  34. Morais, F. I., Page, A. L., & Lund, L. J. (1976). The effect of pH, salt concentration, and nature of electrolytes on the charge characteristics of Brazilian tropical soils. Soil Science Society of America Journal, 40, 521–527.CrossRefGoogle Scholar
  35. Munasinghe, T., & Dissanayake, C. B. (1980). Is the Highland-eastern Vijayan boundary in Sri Lanka a possible mineralized belt? Economic Geology, 75(5), 775–777.CrossRefGoogle Scholar
  36. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.CrossRefGoogle Scholar
  37. O’Hanley, D. S. (1996). Serpentinites: records of tectonic and petrological history. Oxford monographs on geology and geophysics (34th ed.). New York: Oxford University Press.Google Scholar
  38. Oze, C. (2003). Chromium geochemistry of serpentinites and serpentine soils. Stanford: Stanford University.Google Scholar
  39. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004a). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal Science, 304, 67–101.CrossRefGoogle Scholar
  40. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004b). Chromium geochemistry of serpentine soils. International Geology Review, 46, 97–126.CrossRefGoogle Scholar
  41. Oze, C., Skinner, C., Schroth, A., & Coleman, R. G. (2008). Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23, 3391–3403.CrossRefGoogle Scholar
  42. Parks, G. A., & de Bruyn, P. L. (1961). The zero point of charge of oxides. The Journal of Physical Chemistry, 66, 967–973.CrossRefGoogle Scholar
  43. Peijnenburg, W. J. G., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.CrossRefGoogle Scholar
  44. Proctor, J., & Baker, A. J. M. (1994). The importance of nickel for plant growth in ultramafic (serpentine) soils. In S. M. Ross (Ed.), Toxic metals in soil–plant systems (pp. 417–432). Chichester: Wiley.Google Scholar
  45. Rajakaruna, N., & Baker, J. M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka. Ceylon Journal of Science (Biological Sciences), 32, 1–19.Google Scholar
  46. Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: a preliminary study from Sri Lanka. Journal of Applied Botany, 76, 20–28.Google Scholar
  47. Rajakaruna, N., Harris, C. S., & Towers, G. H. N. (2002). Antimicrobial activity of plants collected from serpentine outcrops in Sri Lanka. Pharmaceutical Biology, 40(3), 235–244.CrossRefGoogle Scholar
  48. Rajakaruna, N., Harris, T. B., & Alexander, E. B. (2009). Serpentine geoecology of Eastern North America: a review. Rhodora, 111(945), 21–108.CrossRefGoogle Scholar
  49. Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda ultramafic complex, Sri Lanka. Geoderma, 189–190, 1–9.CrossRefGoogle Scholar
  50. Ranasinghe, N. S. (1987). Serpentinites associated with the precambrian of Sri Lanka. Geological Society of Sri Lanka special publication no. 3. Colombo: Geological Survey Department.Google Scholar
  51. Senevirathne, A. S., Nandadasa, H. G., Fernando, W. S., Sanjeevani, H. H. V. M., & Rajapakshe, R. L. H. R. (2000). The serpentine vegetation of Ussangoda (Hambantota District) and nickel accumulating plant species. Paper presented at the Proceedings of the Sixth Annual Forestry and Environmental Symposium, Kandy, Sri Lanka, 29–30 December.Google Scholar
  52. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. New York: Wiley Inter-Science.Google Scholar
  53. Sucik, G., Hrsak, D., Fedorockova, A., & Lazic, L. (2008). The preliminary characterization of serpentinite from Ljeskovac locality in Croatia. Acta Metallurgica Slovaca, 14, 275–280.Google Scholar
  54. Sun, Y.-c., Chi, P.-h., & Shiue, M.-y. (2001). Comparison of different digestion methods for total decomposition of siliceous and organic environmental samples. Analytical Sciences, 17(12), 1395–1399.CrossRefGoogle Scholar
  55. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  56. Tye, A. M., Young, S., Crout, N. M. J., Zhang, H., Preston, S., Zhao, F. J., et al. (2004). Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 55(3), 579–590.CrossRefGoogle Scholar
  57. Van der Ent, A., Baker, A. M., Reeves, R., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1–2), 319–334.CrossRefGoogle Scholar
  58. Weerasinghe, H. A. S., & Iqbal, M. C. M. (2011). Plant diversity and soil characteristics of the Ussangoda serpentine site. Journal National Science Foundation Sri Lanka, 39(4), 355–363.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Meththika Vithanage
    • 1
  • Anushka Upamali Rajapaksha
    • 1
  • Christopher Oze
    • 2
  • Nishanta Rajakaruna
    • 3
  • C. B. Dissanayake
    • 1
  1. 1.Chemical and Environmental Systems Modeling Research GroupInstitute of Fundamental StudiesKandySri Lanka
  2. 2.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.College of the AtlanticBar HarborUSA

Personalised recommendations