Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 6, pp 3379–3389 | Cite as

Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India

  • Harminder Pal Singh
  • Daizy R. Batish
  • Kuldip Singh Dogra
  • Shalinder Kaur
  • Ravinder Kumar Kohli
  • Anjana Negi
Article

Abstract

Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants—Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.

Keywords

Activated charcoal Chemical interference Litter-amended soil Phenolics Rhizosphere soil Species diversity 

Notes

Acknowledgments

Anjana Negi is thankful to University Grants Commission, India, for financial support in the form of a fellowship.

References

  1. Ambika, S. R., Poornima, S., Palaniraj, R., Sati, S. C., & Narwal, S. S. (2003). Allelopathic plants. 10. Lantana camara L. Allelopathy Journal, 12, 147–162.Google Scholar
  2. Appel, H. M. (1993). Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology, 19, 1521–1552.CrossRefGoogle Scholar
  3. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301, 1377–1380.CrossRefGoogle Scholar
  4. Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1–24.CrossRefGoogle Scholar
  5. Barritt, A. R., & Facelli, J. M. (2001). Effect of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid lands of South Australia. Journal of Arid Environments, 49, 569–579.CrossRefGoogle Scholar
  6. Batish, D. R., Lavanya, K., Singh, H. P., & Kohli, R. K. (2007a). Root-mediated allelopathic interference of nettle-leaved goosefoot (Chenopodium murale) on wheat (Triticum aestivum). Journal of Agronomy and Crop Science, 193, 37–44.CrossRefGoogle Scholar
  7. Batish, D. R., Lavanya, K., Singh, H. P., & Kohli, R. K. (2007b). Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation, 51, 119–128.CrossRefGoogle Scholar
  8. Batish, D. R., Kaur, S., Singh, H. P., & Kohli, R. K. (2009). Nature of interference potential of leaf debris of Ageratum conyzoides. Plant Growth Regulation, 57, 137–144.CrossRefGoogle Scholar
  9. Blum, U., Shafer, S. R., & Lehman, M. E. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18, 673–693.CrossRefGoogle Scholar
  10. Dejong, T. J., & Klinkhamer, P. G. L. (1985). The negative effects of litter of parent plants of Cirsium vulgare to their offsprings: autotoxicity or immobilization? Oecologia, 65, 153–166.CrossRefGoogle Scholar
  11. Dobhal, P. K., Kohli, R. K., & Batish, D. R. (2010). Evaluation of the impact of Lantana camara L. invasion on four major woody shrubs, along Nayar River of Pauri Garhwal in Uttarakhand Himalaya. International Journal of Biodiversity and Conservation, 2, 155–161.Google Scholar
  12. Dobhal, P. K., Kohli, R. K., & Batish, D. R. (2011). Impact of Lantana camara L. invasion on riparian vegetation of Nayar region Garhwal Himalayas (Uttarakhand, India). Journal of Ecology and the Natural Environment, 3, 11–22.Google Scholar
  13. Duggin, J. A., & Gentle, C. B. (1998). Experimental evidence on the importance of disturbance intensity for invasion of Lantana camara L. in dry rainforest-open forest ecotones in north-eastern NSW, Australia. Forest Ecology & Management, 109, 279–292.CrossRefGoogle Scholar
  14. Facelli, J. M. (1994). Multiple indirect effects of plant litter affect the establishment of woody seedlings in old field. Ecology, 75, 1727–1735.CrossRefGoogle Scholar
  15. Facelli, J. M., & Pickett, S. T. A. (1991). Plant litter: its dynamics and effects on plant community structure. Botanical Review, 57, 1–32.CrossRefGoogle Scholar
  16. Frank, D. A., & McNaughton, S. J. (1991). Stability increases with diversity in plant communities: empirical evidence from the 1988 Yellowstone drought. Oikos, 62, 360–362.CrossRefGoogle Scholar
  17. Gantayet, P. K., Lemka, K. C., & Padhy, B. (2011). Vegetative growth and yield response of niger (Guizotia abyssinica) to leaf-litter dust of Lantana camara. The Bioscan, 6(2), 207–210.Google Scholar
  18. Gentle, C. B., & Duggin, J. A. (1997). Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecology, 132, 85–95.CrossRefGoogle Scholar
  19. Heirro, J. L., & Callaway, R. M. (2003). Allelopathy and exotic plant invasion. Plant and Soil, 256, 29–39.CrossRefGoogle Scholar
  20. Hill, M. O. (1973). Diversity and its evenness, a unifying notation and its consequences. Ecology, 54, 427–432.CrossRefGoogle Scholar
  21. Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). The world’s worst weeds: distribution and biology. Honolulu, USA: The University Press of Hawaii.Google Scholar
  22. Keane, R. M., & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17, 164–170.CrossRefGoogle Scholar
  23. Kohli, R. K., Dogra, K. S., Batish, D. R., & Singh, H. P. (2004). Impact of invasive plants on the structure and composition of natural vegetation of northwestern Indian Himalayas. Weed Technology, 18, 1296–1300.CrossRefGoogle Scholar
  24. Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology, a primer on methods and computing. New York: Wiley.Google Scholar
  25. Mack, R., Simberloff, D., Lonsdale, M., Evans, H., Clout, M., & Bazzaz, F. (2000). Biotic invasions: cause, epidemiology, global consequences, and control. Ecological Applications, 10, 689–710.CrossRefGoogle Scholar
  26. Mahmood, K., Mallik, K., Sheikh, K. H., & Lodhi, M. A. K. (1989). Allelopathy in saline agricultural land: vegetation successional changes and patch dynamics. Journal of Chemical Ecology, 15, 565–579.CrossRefGoogle Scholar
  27. Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In A. A. Buzzati-Traverso (Ed.), Perspective in marine biology (pp. 323–347). Berkeley, USA: The University of California Press.Google Scholar
  28. Misra, B. (1968). Ecology work book. New Delhi: Oxford and IBH Company.Google Scholar
  29. Pimentel, D., Mcnair, S., Janecka, J., Wightman, J., Simmonds, C., O’Connell, C., et al. (2001). Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment, 84, 1–20.CrossRefGoogle Scholar
  30. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
  31. Prati, D., & Bossdorf, O. (2004). Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). American Journal of Botany, 91, 285–288.CrossRefGoogle Scholar
  32. Pyšek, P., & Prach, K. (2003). Research into plant invasions in a crossroads region: history and focus. Biological Invasions, 5, 337–348.CrossRefGoogle Scholar
  33. Rejmánek, M., & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77, 1655–1661.CrossRefGoogle Scholar
  34. Ridenour, W. M., & Callaway, R. M. (2001). The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia, 126, 444–450.CrossRefGoogle Scholar
  35. Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., et al. (2001). The population biology of invasive species. Annual Review of Ecology and Systematics, 32, 305–332.CrossRefGoogle Scholar
  36. Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana, Illinois: University of Illinois Press.Google Scholar
  37. Sharma, G. P., & Raghubanshi, A. S. (2007). Effect of Lantana camara cover on local depletion of tree population in the Vindhyan tropical dry deciduous forests of India. Applied Ecology and Environmental Research, 5, 109–121.Google Scholar
  38. Sharma, G. P., & Raghubanshi, A. S. (2010). How lantana invades dry deciduous forest: a case study from Vindhyan highlands, India. Tropical Ecology, 51(2S), 305–316.Google Scholar
  39. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.CrossRefGoogle Scholar
  40. Swain, T., & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica I. The quantitative analysis of constituents. Journal of the Science of Food and Agriculture, 10, 63–68.CrossRefGoogle Scholar
  41. Thijs, H., Shann, J. R., & Weidenhamer, J. D. (1994). The effect of phytotoxins on competitive outcome in a model system. Ecology, 75, 1959–1964.CrossRefGoogle Scholar
  42. Thompson, K., Hodgson, J. G., Grime, J. P., & Burke, M. J. W. (2001). Plant traits and temporal scale: evidence from a five-year invasion experiment using native species. Journal of Ecology, 89, 1054–1060.CrossRefGoogle Scholar
  43. Vitousek, P. M., D’Antonio, C. M., Loope, L. L., & Westbrooks, R. (1996). Biological invasions as global environmental change. American Scientist, 84, 218–228.Google Scholar
  44. Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191, 162–171.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harminder Pal Singh
    • 1
  • Daizy R. Batish
    • 2
  • Kuldip Singh Dogra
    • 3
  • Shalinder Kaur
    • 4
  • Ravinder Kumar Kohli
    • 2
  • Anjana Negi
    • 2
  1. 1.Department of Environment StudiesPanjab UniversityChandigarhIndia
  2. 2.Department of BotanyPanjab UniversityChandigarhIndia
  3. 3.Botanic Garden of Indian RepublicBotanical Survey of IndiaNoidaIndia
  4. 4.Department of BotanyDAV UniversityJalandharIndia

Personalised recommendations