Advertisement

Environmental Monitoring and Assessment

, Volume 186, Issue 5, pp 3053–3062 | Cite as

The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake, Lake Taihu, China

  • Daming LiEmail author
  • Yang Yu
  • Zhen Yang
  • Fanxiang Kong
  • Tongqing Zhang
  • Shengkai Tang
Article

Abstract

Lake Taihu is a large shallow freshwater lake (surface area 2,338 km2, mean depth 1.9 m) in China, which has experienced toxic cyanobacterial bloom dominated by Microcystis annually during the last few decades. In the present study, the dynamics of toxic and nontoxic Microcystis in three sampling stations (Meiliang Bay (site N2), Gonghu Bay (site N4), and the lake center area (site S4)) were quantified using quantitative real-time PCR (qPCR) during bloom periods from April to September, 2010. Our data showed that the abundance of toxic Microcystis and the toxic proportion gradually increased from April to August in water samples and reached the peak in August. During the study period, toxic Microcystis genotypes comprised between 26.2 and 64.3, between 4.4 and 22.1, and between 10.4 and 20.6 % of the total Microcystis populations in the three sampling sites, respectively. Correlation analysis suggested that there was a strong positive relationship between total Microcystis, toxic Microcystis and the toxic proportion. Chlorophyll a, total phosphorus, and water temperature were positively correlated with the abundances of total Microcystis and toxic Microcystis. Furthermore, the toxic proportion was positively correlated with total phosphorus (P < 0.05) and water temperature (P < 0.01), showing that global warming together with eutrophication could promote more frequent toxic blooms.

Keywords

Toxic cyanobacterial bloom Microcystis Microcystin Quantitative real-time PCR Lake Taihu 

Notes

Acknowledgements

This project was supported by the project of Jiangsu Province Science Foundation (BK2012488), and National Basic Research Program of China (“973” Program, 2008CB418000).

References

  1. Amé, M. V., Díaz, M. P., & Wunderlin, D. A. (2003). Occurrence of toxic cyanobacterial blooms in San Roque Reservoir (Córdoba, Argentina): a field and chemometric study. Environmental Toxicology, 18(3), 192–201.CrossRefGoogle Scholar
  2. Carmichael, W. W. (1994). The toxins of cyanobacteria. Scientific American, 270(1), 78–86.CrossRefGoogle Scholar
  3. Chorus, I., & Bartam, J. (1999). Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. London: E and FN Spon.CrossRefGoogle Scholar
  4. Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8(5), 715–725.CrossRefGoogle Scholar
  5. Duan, H. T., Ma, R. H., Xu, X. F., Kong, F. X., Zhang, S. X., Kong, W. J., et al. (2009). Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science and Technology, 43(10), 3522–3528.CrossRefGoogle Scholar
  6. Fleming, L. E., Rivero, C., Burns, J., Williams, C., Bean, J. A., Shea, K. A., et al. (2002). Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae, 1(2), 157–168.CrossRefGoogle Scholar
  7. Fortin, N., Aranda-Rodriguez, R., Hongmei, J., Pick, F., Bird, D., & Greer, C. W. (2010). Detection of microcystin-producing cyanobacteria in Missisquoi Bay, Quebec, Canada, using quantitative PCR. Applied and Environmental Microbiology, 76(15), 5105–5112.CrossRefGoogle Scholar
  8. Frangeul, L., Quillardet, P., Castets, A.-M., Humbert, J.-F., Matthijs, H. C. P., Cortez, D., et al. (2008). Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics, 9, 274–294.CrossRefGoogle Scholar
  9. Furukawa, K., Noda, N., Tsuneda, S., Saito, T., Itayama, T., & Inamori, Y. (2006). Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. Journal of Bioscience and Bioengineering, 102(2), 90–96.CrossRefGoogle Scholar
  10. Ito, E., Kondo, F., Terao, K., & Harada, K. (1997). Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon, 35(9), 1453–1457.CrossRefGoogle Scholar
  11. Joung, S.-H., Oh, H.-M., Ko, S.-R., & Ahn, C.-Y. (2011). Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10(2), 188–193.CrossRefGoogle Scholar
  12. Kaebernick, M., Neilan, B. A., Börner, T., & Dittmann, E. (2000). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied and Environmental Microbiology, 66(8), 3387–3392.CrossRefGoogle Scholar
  13. Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., et al. (2007a). Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Applied and Environmental Microbiology, 73(9), 2939–2946.CrossRefGoogle Scholar
  14. Kardinaal, W. E. A., Janse, I., Kamst-van Agterveld, M., Meima, M., Snoek, J., Mur, L. R., et al. (2007b). Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology, 48(1), 1–12.CrossRefGoogle Scholar
  15. Kong, F. X., Ma, R. H., Gao, J. F., & Wu, X. D. (2009). The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. Journal of Lake Science, 21(3), 314–328.Google Scholar
  16. Kurmayer, R., & Kutzenberger, T. (2003). Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology, 69(11), 6723–6730.CrossRefGoogle Scholar
  17. Lee, S. J., Jang, M. H., Kim, H. S., Yoon, B. D., & Oh, H. M. (2000). Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. Journal of Applied Microbiogy, 89(2), 323–329.CrossRefGoogle Scholar
  18. Li, D. M., Kong, F. X., Yu, Y., Zhang, M., & Shi, X. L. (2011). The abundance of microcystin-producing and non-microcystin-producing Microcystis populations in the water column and sediment during a water bloom in Lake Taihu. Acta Scientiae Circumstantiae, 31(2), 292–298.Google Scholar
  19. Li, D. M., Kong, F. X., Shi, X. L., Ye, L. L., Yu, Y., & Yang, Z. (2012). Quantification of microcystin-producing and non-microcystin producing Microcystis populations during the 2009 and 2010 blooms in Lake Taihu using quantitative real-time PCR. Journal of Environmental Science, 24(2), 284–290.CrossRefGoogle Scholar
  20. Mackintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters, 264(2), 187–192.CrossRefGoogle Scholar
  21. Marahiel, M. A. (1992). Multidomain enzymes involved in peptide synthesis. FEBS Letters, 307(1), 40–43.CrossRefGoogle Scholar
  22. Nishizawa, T., Asayama, M., Fujii, K., Harada, K.-I., & Shirai, M. (1999). Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. The Journal of Biochemistry, 126(3), 520–529.CrossRefGoogle Scholar
  23. Nishizawa, T., Ueda, A., Asayama, M., Fujii, K., Harada, K.-I., Ochi, K., et al. (2000). Polyketide synthetase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic hepatopeptide microcystin. The Journal of Biochemistry, 127(5), 779–789.CrossRefGoogle Scholar
  24. Orr, P. T., & Jones, G. J. (1998). Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnology and Oceanography, 43(7), 1604–1614.CrossRefGoogle Scholar
  25. Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms with an emphasis on cyanobacteria. The Scientic World Journal, 1, 76–113.CrossRefGoogle Scholar
  26. Rapala, J., Sivonen, K., Luukkanien, R., & Niemelä, S. (1993). Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains - a laboratory study. Journal of Applied Phycology, 5(6), 581–591.CrossRefGoogle Scholar
  27. Rinta-Kanto, J. M., Ouellette, A. J., Boyer, G. L., Twiss, M. R., Bridgeman, T. B., & Wilhelm, S. W. (2005). Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science &Technology, 39(11), 4198–4205.CrossRefGoogle Scholar
  28. Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8(5), 665–673.CrossRefGoogle Scholar
  29. Schatz, D., Keren, Y., Hadas, O., Carmeli, S., Sukenik, A., & Kaplan, A. (2005). Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology, 7(6), 798–805.Google Scholar
  30. Shen, P. P., Shi, Q., Hua, Z. C., Kong, F. X., Wang, Z. G., Zhuang, S. X., et al. (2003). Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environment International, 29(5), 641–647.CrossRefGoogle Scholar
  31. Sivonen, K. (1990). Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56(9), 2658–2666.Google Scholar
  32. Song, L., Sano, T., Li, R., Watanabe, M. H., Liu, Y., & Kaya, K. (1998). Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological Research, 46(Supplement s2), 19–23.CrossRefGoogle Scholar
  33. Song, L., Chen, W., Peng, L., Wan, N., Gan, N., & Zhang, X. (2007). Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Research, 41(13), 2853–2864.CrossRefGoogle Scholar
  34. Te, S. H., & Gin, K. Y.-H. (2011). The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae, 10(3), 319–329.CrossRefGoogle Scholar
  35. Tillett, D., Dittmann, E., Erhard, M., Von Döhren, H., Böner, T., & Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide: polyketide synthetase system. Chemistry & Biology, 7(10), 753–764.CrossRefGoogle Scholar
  36. Utkilen, H., & Gjølme, N. (1992). Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Applied and Environmental Microbiology, 58(4), 1321–1325.Google Scholar
  37. Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L., et al. (2003). Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Applied and Environmental Microbiology, 69(11), 7289–7297.CrossRefGoogle Scholar
  38. Van der Westhuizen, A. J., & Eloff, J. N. (1983). Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga Microcystis aeruginosa. Zeitschrift für Pflanzenphysiologie, 110(2), 157–163.CrossRefGoogle Scholar
  39. Van der Westhuizen, A. J., & Eloff, J. N. (1985). Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta, 163(1), 55–59.CrossRefGoogle Scholar
  40. Vézie, C., Brient, L., Sivonen, K., Bertru, G., Lefeuvre, J.-C., & Salkinoja- Salonen, M. (1998). Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microbial Ecology, 35(2), 126–135.CrossRefGoogle Scholar
  41. Vézie, C., Rapla, J., Vaitomaa, J., Seitsonen, J., & Sivonen, K. (2002). Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentration. Microbial Ecology, 43(4), 443–454.CrossRefGoogle Scholar
  42. Watanabe, M. F., & Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49(5), 1342–1344.Google Scholar
  43. Wiedner, C., Visser, P. M., Fastner, J., Codd, G. A., Mur, L. R., & Metcalf, J. (2003). Effects of light on the microcystin content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69(3), 1475–1481.CrossRefGoogle Scholar
  44. Ye, W. J., Liu, X. L., Tan, J., Li, D. T., & Yang, H. (2009). Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae, 8(5), 637–644.CrossRefGoogle Scholar
  45. Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N., & Hiroishi, S. (2007). Dynamics of microcystin- producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters, 266(1), 49–53.CrossRefGoogle Scholar
  46. Zhu, G. W. (2008). Eutrophic status and causing factors for a large, shallow and subtrophical Lake Taihu Lake, China. Journal of Lake Sciences, 20(1), 21–26.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daming Li
    • 1
    • 2
    Email author
  • Yang Yu
    • 2
  • Zhen Yang
    • 2
  • Fanxiang Kong
    • 2
  • Tongqing Zhang
    • 1
  • Shengkai Tang
    • 1
  1. 1.Key Laboratory of Fisheries Resources in Inland WaterFreshwater Fisheries Research Institute of Jiangsu ProvinceNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations