Environmental Monitoring and Assessment

, Volume 186, Issue 4, pp 2243–2257 | Cite as

Nutrient mitigation in a temporary river basin

  • Ourania Tzoraki
  • Nikolaos P. Nikolaidis
  • David Cooper
  • Elissavet Kassotaki


We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The ‘total daily maximum load’ approach is used to estimate the nutrient flux status by flow class, indicating that almost 60 % of the river network fails to meet nitrogen criteria and 50 % phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.


River basin Evrotas Nutrients Water quality SWAT model TMDL PHREEQC Intermittent flow 



This work is part of the European Union funded project Mirage ( We would like to thank the anonymous reviewers for their valuable comments towards improving this manuscript. We would like to thank Papadoulakis V., Karalemas N. (Lakonia Prefecture) and Gamvroudis Ch. (Technical University of Crete) for their help in field sampling and laboratory analysis.

Supplementary material

10661_2013_3533_Fig5_ESM.jpg (601 kb)

(JPEG 600 kb)

10661_2013_3533_Fig6_ESM.jpg (540 kb)

(JPEG 540 kb)

10661_2013_3533_Fig7_ESM.jpg (82 kb)

(JPEG 81 kb)

10661_2013_3533_MOESM1_ESM.docx (16 kb)
ESM 4 (DOCX 16 kb)
10661_2013_3533_MOESM2_ESM.txt (1 kb)
ESM 5 (TXT 0 kb)


  1. Acuña, V., & Tockner, K. (2010). The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Change Biology, 16(9), 2638–2650.Google Scholar
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements. Rome: FAO. Paper 56.Google Scholar
  3. Antonakos, A., & Lambrakis, N. (2000). Hydrodynamic characteristics and nitrate propagation in Sparta aquifer. Water Research, 34(16), 3977–3986.CrossRefGoogle Scholar
  4. Arnold, J. G., Srinivasan, R., & Muttiah, W. J. R. (1998). Large area hydrologic modelling and assessment part I: model development. Journal of the American Water Resources Association, 34(1), 73–89.Google Scholar
  5. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.CrossRefGoogle Scholar
  6. Demetropoulou, L., Nikolaidis, N., Papadoulakis, V., Tsakiris, K., Koussouris, T., Kalogerakis, N., et al. (2010). Water framework directive implementation in Greece: introducing participation in water governance—the case of the Evrotas river basin management plan. Environmental Policy and Governance, 20(5), 336–349.CrossRefGoogle Scholar
  7. Dieter, D., von Schiller, D., García-Roger, E. M., Sánchez-Montoya, M. M., Gómez, R., Mora-Gómez, J., et al. (2011). Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquatic Sciences, 73(4), 599–609.CrossRefGoogle Scholar
  8. EPA, U. S. (2007). An approach for using Load Duration Curves in the Development of TMDLs. Office of Wetlands, Oceans and Watersheds, EPA 841-B-07-006.Google Scholar
  9. Gallart, F., Prat, N., García-Roger, E. M., Latron, J., Rieradevall, M., Llorens, P., et al. (2011). Analyzing stream reach flow status frequency to assist the determination of ecological quality in temporary streams. Hydrology and Earth System Sciences Discussions, 8(5), 9637–9673.Google Scholar
  10. Gelsomino, A., Abenavoli, M. R., Princi, G., Attinà, E., Cacco, G., & Sorgonà, A. (2010). Compost from fresh orange waste: a suitable substrate for nursery and field crops? Compost Science and Utilization, 18(3), 201–210.CrossRefGoogle Scholar
  11. Karaouzas, I., Lambropoulou, D. A., Skoulikidis, N. T., & Albanis, T. A. (2011). Levels, sources and spatiotemporal variation of nutrients and micropollutants in small streams of a Mediterranean river basin. Journal of Environmental Monitoring, 13(11), 3064–3074.CrossRefGoogle Scholar
  12. Karydis, M., & Kitsiou, D. (2012). Eutrophication and environmental policy in the Mediterranean Sea: a review. Environmental Monitoring and Assessment, 184(8), 4931–4984.CrossRefGoogle Scholar
  13. Larned, S. T., Datry, T., Arscott, D. B., & Tockner, K. (2010). Emerging concepts in temporary-river ecology. Freshwater Biology, 55(4), 717–738.CrossRefGoogle Scholar
  14. Lashou, S. (2010). Determination of reference conditions and nutrients classification system development for the evaluation of chemical–physical state of Greek rivers. Master Thesis of Chemistry and Environmental Technology, Univ. Athens.Google Scholar
  15. Moraetis, D., Stamati, F. E., Nikolaidis, N. P., & Kalogerakis, N. (2011). Olive mill wastewater irrigation of maize: impacts on soil and groundwater. Agricultural Water Management, 98(7), 1125–1132.CrossRefGoogle Scholar
  16. Parkhurst, D. L., & Appelo, C. A. J. (1999). PHREEQC—user’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigation Report 99-4259, USGS.Google Scholar
  17. Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., et al. (2012). Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96(1), 35–42.CrossRefGoogle Scholar
  18. Perrin, J. L., & Tournoud, M. G. (2009). Hydrological processes controlling flow generation in a small Mediterranean catchment under karstic influence [Processus hydrologiques contrôlant la génération des débits dans un petit bassin versant Méditerranéen sous influence karstique]. Hydrological Sciences Journal, 54(6), 1125–1140.CrossRefGoogle Scholar
  19. Roberto, G. R., Ochoa, M. V., Hinojosa, M. B., & Beatriz, G. M. (2012). Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agronomy for Sustainable Development, 32(3), 803–810.Google Scholar
  20. Skoulikidis, N., & Amaxidis, Y. (2009). Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed Mediterranean river with intermittent flow. Journal of Hydrology, 373(1–2), 218–229.CrossRefGoogle Scholar
  21. Skoulikidis, N. T., Vardakas, L., Karaouzas, I., Economou, A. N., Dimitriou, E., & Zogaris, S. (2011). Assessing water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece. Aquatic Sciences, 73(4), 581–597.CrossRefGoogle Scholar
  22. Smil, V. (2001). Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge: MIT (pp. xvii338.).Google Scholar
  23. Stamati, F. E., Chalkias, N., Moraetis, D., & Nikolaidis, N. P. (2010). Natural attenuation of nutrients in a Mediterranean drainage canal. Journal of Environmental Monitoring, 12(1), 164–171.CrossRefGoogle Scholar
  24. Steward, A. L., Von Schiller, D., Tockner, K., Marshall, J. C., & Bunn, S. E. (2012). When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment, 10(4), 202–209.CrossRefGoogle Scholar
  25. Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21(5), 821–833.CrossRefGoogle Scholar
  26. Tzoraki, O., Nikolaidis, N. P., Amaxidis, Y., & Skoulikidis, N. T. (2007). In-stream biogeochemical processes of a temporary river. Environmental Science and Technology, 41(4), 1225–1231.CrossRefGoogle Scholar
  27. Tzoraki, O., Valta, K., Stamati, F., Moraetis, D., Andrianaki, M., & Nikolaidis, N. P. (2008). Monitored natural attenuation of nutrients at river basin scale—the case of Evrotas river basin. 4th European Bioremediation Conference, 3–6 September, Chania, 2008.Google Scholar
  28. Tzoraki, O., Gamvroudis, C., Christodoulou, A., Papadoulakis, V., Karalemas, N., & Nikolaidis, N. P. (2011). Hydrological modeling of an intense carstified river system. In: Lambrakis N. et al. (Eds.), Advances in the research of aquatic environment, doi: 10.1007/978-3-642-19902-8.
  29. von Schiller, D., Acuña, V., Graeber, D., Martí, E., Ribot, M., Sabater, S., et al. (2011). Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 73(4), 485–497.CrossRefGoogle Scholar
  30. Wriedt, G., Van der Velde, M., Aloe, A., & Bouraoui, F. (2009). Estimating irrigation water requirements in Europe. Journal of Hydrology, 373(527–544).Google Scholar
  31. Zoppini, A., Amalfitano, S., Fazi, S., & Puddu, A. (2010). Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia, 657(1), 37–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ourania Tzoraki
    • 1
  • Nikolaos P. Nikolaidis
    • 2
  • David Cooper
    • 3
  • Elissavet Kassotaki
    • 2
  1. 1.University of AegeanMytileneGreece
  2. 2.Technical University of Crete (TUC)ChaniaGreece
  3. 3.Centre for Ecology and Hydrology (CEH)BangorUnited Kingdom

Personalised recommendations