Environmental Monitoring and Assessment

, Volume 186, Issue 4, pp 2111–2120 | Cite as

Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea

Article

Abstract

The aims of the present study were to determine the levels of bioaerosols including airborne culturable bacteria (total suspended bacteria, Gram-positive bacteria, Staphylococcus, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria), fungi, endotoxin, and viruses (influenza A, influenza B, respiratory syncytial virus types A/B, parainfluenza virus types 1/2/3, metapnemovirus, and adenovirus) and their seasonal variations in indoor air of residential apartments. Of the total suspended bacteria cultured in an indoor environment, Staphylococcus was dominant and occupied 49.0 to 61.3 % of indoor air. Among Staphylococcus, S. aureus were detected in 100 % of households' indoor air ranging from 4 to 140 CFU/m3, and 66 % of households were positive for MRSA ranging from 2 to 80 CFU/m3. Staphylococcus and S. aureus concentrations correlated with indoor temperature (adjusted β: 0.4440 and 0.403, p < 0.0001). Among respiratory viruses, adenovirus was detected in 14 (14 %) samples and influenza A virus was detected in 3 (3 %) samples regarding the indoor air of apartments. Adenovirus concentrations were generally higher in winter (mean concentration was 2,106 copies/m3) than in spring (mean concentration was 173 copies/m3), with concentrations ranging between 12 and 560 copies/m3. Also, a strong negative correlation between adenovirus concentrations and relative humidity in indoor air was observed (r = −0.808, p < 0.01). Furthermore, temperature also negatively correlated with adenovirus concentrations (r = −0.559, p < 0.05).

Keywords

Apartments' indoor air Bioaerosols Staphylococcus aureus Methicillin-resistant S. aureus Adenovirus Seasonal influence 

Notes

Acknowledgments

This study was supported financially by a grant from GS Engineering & Construction Company and Woong Jin Coway Company.

References

  1. Aydogdu, H., Asan, A., & Otkun, M. T. (2010). Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164(1–4), 53–66.CrossRefGoogle Scholar
  2. Barker, J., Stevens, D., & Bloomfield, S. F. (2001). Spread and prevention of some common viral infections in community facilities and domestic homes. Journal of Applied Microbiology, 91(1), 7–21.Google Scholar
  3. Blachere, F. M., Lindsley, W. G., Pearce, T. A., Anderson, S. E., Fisher, M., Khakoo, R., Meade, B. J., Lander, O., Davis, S., Thewlis, R. E., Celik, I., Chen, B. T., & Beezhold, D. H. (2009). Measurement of airborne influenza virus in a hospital emergency department. Clinical Infectious Diseases, 48(4), 438–440.CrossRefGoogle Scholar
  4. Bramble, M., Morris, D., & Tolomeo, P. (2011). Potential role of pet animals in household transmission of methicillin-resistant Staphylococcus aureus: a narrative review. Vector Borne and Zoonotic Diseases, 11, 617–620.CrossRefGoogle Scholar
  5. Burge, H. (2001). Biological agents. In J. D. Scott Baker & D. McCallum (Eds.), Residential exposure assessment: A sourcebook (pp. 245–261). New York: Plenum.Google Scholar
  6. Casanova, L. M., Jeon, S., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2010). Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Microbiology, 76(9), 2712–2717.CrossRefGoogle Scholar
  7. CEC. (1993). Indoor air quality & its impact on man. Biological particles in indoor environments. EUR 14988 EN. Commission of the European communities, Luxembourg.Google Scholar
  8. Ciencewicki, J., & Jaspers, I. (2007). Air pollution and respiratory viral infection. Inhalation Toxicology, 19, 1135–1146.CrossRefGoogle Scholar
  9. Davis, M. F., Iverson, S. A., Baron, P., Vasse, A., Silbergeld, E. K., Lautenbach, E., & Morris, D. O. (2012). Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infectious Diseases, 12(9), 703–716.CrossRefGoogle Scholar
  10. Di Giulio, M., Grande, R., Di Campli, E., Di Bartolomeo, S., & Cellini, L. (2010). Indoor air quality in university environments. Environmental Monitoring and Assessment, 170(1–4), 509–517.CrossRefGoogle Scholar
  11. Diekema, D. J., Pfaller, M. A., Schmitz, F. J., Smayevsky, J., Bell, J., Jones, R. N., Beach, M., & Grp, S. P. (2001). Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clinical Infectious Diseases, 32, S114–S132.CrossRefGoogle Scholar
  12. Dutkiewicz, J., & Górny, R. (2002). Biological factors hazardous to human health: classification and criteria of exposure assessment. Medycyna Pracy, 53(1), 29–39.Google Scholar
  13. Elston, J. W. T., & Barlow, G. D. (2009). Community-associated MRSA in the United Kingdom. Journal of Infection, 59(3), 149–155.Google Scholar
  14. Fabian, P., McDevitt, J. J., Lee, W. M., Houseman, E. A., & Milton, D. K. (2009). An optimized method to detect influenza virus and human rhinovirus from exhaled breath and the airborne environment. Journal of Environmental Monitoring, 11(2), 314–317.CrossRefGoogle Scholar
  15. Faires, M. C., Tater, K. C., & Weese, J. S. (2009). An investigation of methicillin-resistant Staphylococcus aureus colonization in people and pets in the same household with an infected person or infected pet. Journal of the American Veterinary Medical Association, 235, 540–543.CrossRefGoogle Scholar
  16. Gandara, A., Mota, L. C., Flores, C., Perez, H. R., Green, C. F., & Gibbs, S. G. (2006). Isolation of Staphylococcus aureus and antibiotic-resistant Staphylococcus aureus from residential indoor bioaerosols. Environmental Health Perspectives, 114(12), 1859–1864.Google Scholar
  17. Gorny, R. L., & Dutkiewicz, J. (2002). Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Annals of Agricultural and Environmental Medicine, 9(1), 17–23.Google Scholar
  18. Gorwitz, R. J., Kruszon-Moran, D., McAllister, S. K., McQuillan, G., McDougal, L. K., Fosheim, G. E., Jensen, B. J., Killgore, G., Tenover, F. C., & Kuehnert, M. J. (2008). Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. Journal of Infectious Diseases, 197(9), 1226–1234.CrossRefGoogle Scholar
  19. Halablab, M. A., Hijazi, S. M., Fawzi, M. A., & Araj, G. F. (2010). Staphylococcus aureus nasal carriage rate and associated risk factors in individuals in the community. Epidemiology and Infection, 138(5), 702–706.CrossRefGoogle Scholar
  20. Hanselman, B. A., Kruth, S. A., Rousseau, J., & Weese, J. S. (2009). Coagulase positive staphylococcal colonization of humans and their household pets. Canadian Veterinary Journal, 50, 954–958.Google Scholar
  21. Huang, Y. C., & Chen, C. J. (2011). Community-associated meticillin-resistant Staphylococcus aureus in children in Taiwan, 2000s. International Journal of Antimicrobial Agents, 38(1), 2–8.CrossRefGoogle Scholar
  22. KCDC. (2011). Public health weekly report. Korea Centers for Disease Control, 4(15), 269.Google Scholar
  23. Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42(5), 2188–2196.CrossRefGoogle Scholar
  24. Kim, E. S., Song, J. S., Lee, H. J., Choe, P. G., Park, K. H., Cho, J. H., Park, W. B., Kim, S. H., Bang, J. H., Kim, D. M., Park, K. U., Shin, S., Lee, M. S., Choi, H. J., Kim, N. J., Kim, E. C., Oh, M. D., Kim, H. B., & Choe, K. W. (2007). A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. Journal of Antimicrobial Chemotherapy, 60(5), 1108–1114.CrossRefGoogle Scholar
  25. Kim, K. Y., Kim, Y. S., & Kim, D. (2010). Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Industrial Health, 48(2), 236–243.CrossRefGoogle Scholar
  26. Kwon, Y.-I., Kim, T.-W., Kim, H.-Y., Chang, Y.-H., Kwak, H.-S., Woo, G.-J., & Chung, Y.-H. (2007). Monitoring of methicillin resistant Staphylococcus aureus from medical environment in Korea. Korean Journal of Microbiology and Biotechnology, 35(2), 158–162.Google Scholar
  27. Lee, J. H., & Jo, W. K. (2006). Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environmental Research, 101(1), 11–17.CrossRefGoogle Scholar
  28. Lowen, A. C., Mubareka, S., Steel, J., & Palese, P. (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens, 3(10), 1470–1476.CrossRefGoogle Scholar
  29. Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532.CrossRefGoogle Scholar
  30. Lucet, J. C., Paoletti, X., Demontpion, C., Degrave, M., Vanjak, D., Vincent, C., Andremont, A., Jarlier, V., Mentre, F., & Nicolas-Chanoine, M. H. (2009). Carriage of methicillin-resistant Staphylococcus aureus in home care settings: prevalence, duration, and transmission to household members. Archives of Internal Medicine, 169(15), 1372–1378.CrossRefGoogle Scholar
  31. Mentese, S., Arisoy, M., Rad, A. Y., & Gullu, G. (2009). Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean-Soil Air Water, 37(6), 487–493.CrossRefGoogle Scholar
  32. Myatt, T. A., Johnston, S. L., Zuo, Z., Wand, M., Kebadze, T., Rudnick, S., & Milton, D. K. (2004). Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. American Journal of Respiratory and Critical Care Medicine, 169(11), 1187–1190.CrossRefGoogle Scholar
  33. Myatt, T. A., Kaufman, M. H., Allen, J. G., MacIntosh, D. L., Fabian, M. P., & McDevitt, J. J. (2010). Modeling the airborne survival of influenza virus in a residential setting: the impacts of home humidification. Environmental Health, 9, 55.CrossRefGoogle Scholar
  34. Okten, S., & Asan, A. (2012). Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital. Environmental Monitoring and Assessment, 184(3), 1739–1751.CrossRefGoogle Scholar
  35. Philip, L. G., Susan, X. L., & Elaine, L. L. (2006). A U.S. population-based survey of Staphylococcus aureus colonization. Annals of International Medicine, 144(5), 318–325.CrossRefGoogle Scholar
  36. Rhee, C. H., & Woo, G. J. (2010). Emergence and characterization of foodborne methicillin-resistant Staphylococcus aureus in Korea. Journal of Food Protection, 73(12), 2285–2290.Google Scholar
  37. Scott, E., Duty, S., & Callahan, M. (2008). A pilot study to isolate Staphylococcus aureus and methicillin-resistant S aureus from environmental surfaces in the home. American Journal of Infection Control, 36(6), 458–460.CrossRefGoogle Scholar
  38. Smith, T. C., & Moritz, E. D. (2010). The environment as a factor in methicillin-resistant Staphylococcus aureus transmission. Reviews on Environmental Health, 25(2), 121–134.CrossRefGoogle Scholar
  39. Srikanth, P., Sudharsanam, S., & Steinberg, R. (2008). Bio-aerosols in indoor environment: composition, health effects and analysis. Indian Journal of Medical Microbiology, 26(4), 302–312.CrossRefGoogle Scholar
  40. Sudharsanam, S., Swaminathan, S., Ramalingam, A., Thangavel, G., Annamalai, R., Steinberg, R., Balakrishnan, K., & Srikanth, P. (2012). Characterization of indoor bioaerosols from a hospital ward in a tropical setting. African Health Sciences, 12(2), 217–225.CrossRefGoogle Scholar
  41. Tseng, C. C., Chang, L. Y., & Li, C. S. (2010). Detection of airborne viruses in a pediatrics department measured using real-time qPCR coupled to an air-sampling filter method. Journal of Environmental Health, 73(4), 22–28.Google Scholar
  42. Uhlemann, A., Knox, J., Miller, M., Hafer, C., Vasquez, G., Ryan, M., Vavagiakis, P., Shi, Q., & Lowy, F. D. (2011). The environment as an unrecognized reservoir for community-associated methicillin resistant Staphylococcus aureus USA300: a case–control study. PLoS One, 1–9.Google Scholar
  43. Wan, G. H., Huang, C. G., Huang, Y. C., Huang, J. P., Yang, S. L., Lin, T. Y., & Tsao, K. C. (2012). Surveillance of airborne adenovirus and Mycoplasma pneumoniae in a hospital pediatric department. Plos One, 7(3), 1–5.Google Scholar
  44. Weese, J. S., & van Duijkeren, E. (2010). Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Veterinary Microbiology, 140(3–4), 418–429.CrossRefGoogle Scholar
  45. Yang, W., & Marr, L. C. (2012). Mechanisms by which ambient humidity may affect viruses in aerosols. Applied and Environmental Microbiology, 78(19), 6781–6788.CrossRefGoogle Scholar
  46. Yang, W., Elankumaran, S., & Marr, L. C. (2011). Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. Journal of the Royal Society Interface, 8(61), 1176–1184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kyong Whan Moon
    • 1
  • Eun Hae Huh
    • 1
  • Ho Chul Jeong
    • 2
  1. 1.Department of Environmental Health, College of Health ScienceKorea UniversitySeoulSouth Korea
  2. 2.GS Engineering & ConstructionSeoulSouth Korea

Personalised recommendations