Environmental Monitoring and Assessment

, Volume 186, Issue 3, pp 1747–1763 | Cite as

Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama

  • Janina Seemann
  • Cindy T. González
  • Rodrigo Carballo-Bolaños
  • Kathryn Berry
  • Georg A. Heiss
  • Ulrich Struck
  • Reinhold R. Leinfelder


Environmental and biological reef monitoring was conducted in Almirante Bay (Bahía Almirante) in Bocas del Toro, Panama, to assess impacts from anthropogenic developments. An integrated monitoring investigated how seasonal temperature stress, turbidity, eutrophication and physical impacts threatened reef health and biodiversity throughout the region. Environmental parameters such as total suspended solids [TSS], carbon isotopes (δ13C), C/N ratios, chlorophyll a, irradiance, secchi depth, size fractions of the sediments and isotope composition of dissolved inorganic carbon [DIC] of the water were measured throughout the years 2010 and 2011 and were analysed in order to identify different impact sources. Compared to data from Collin et al. (Smithsonian Contributions to the Marine Sciences 38:324–334, 2009) chlorophyll a has doubled at sites close to the city and the port Almirante (from 0.46–0.49 to 0.78–0.97 μg l−1) and suspension load increased, visible by a decrease in secchi depth values. Visibility decreased from 9-13 m down to 4 m at the bay inlet Boca del Drago, which is strongly exposed to river run off and dredging for the shipping traffic. Eutrophication and turbidity levels seemed to be the determining factor for the loss of hard coral diversity, most significant at chlorophyll a levels higher than 0.5 μg l−1 and TSS levels higher than 4.7 mg l−1. Hard coral cover within the bay has also declined, at some sites down to <10 % with extremely low diversities (7 hard coral species). The hard coral species Porites furcata dominated the reefs in highly impacted areas and showed a strong recovery after bleaching and a higher tolerance to turbidity and eutrophication compared to other hard coral species in the bay. Serious overfishing was detected in the region by a lack of adult and carnivorous fish species, such as grunts, snappers and groupers. Study sites less impacted by anthropogenic activities and/or those with local protection showed a higher hard coral cover and fish abundance; however, an overall loss of hard coral diversity was observed.


Reef cover Biodiversity Environmental Biological monitoring 



This study was supported by the von Pawel-Rammingen foundation and the German Academic Exchange Service (DAAD). We want to thank people from the Smithsonian Tropical Research Institute Bocas del Toro in particular Rachel Collin, Gabriel Jacome, Plinio Gondola and Eric Brown for their invaluable help, great support in organization, field work and space acquisition at the station. Special thanks to Ewgenija Kuhl for her great help in the isotope analysis and to Regine Blühdorn for the English correction. Thank you Claudio Richter for your supervision, helpful input, discussions and advices.

Supplementary material

10661_2013_3490_MOESM1_ESM.pdf (6.7 mb)
ESM 1 (PDF 6.72 MB)


  1. Aminot A, & Rey F (2000) Standard procedure for the determination of chlorophyll a by spectroscopic methods. ICES, DenmarkGoogle Scholar
  2. Anthony, K. R. N. (1999). Coral suspension feeding on fine particulate matter. Journal of Experimental Marine Biology and Ecology, 232, 85–106.CrossRefGoogle Scholar
  3. Anthony, K. R. N., & Fabricius, K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 252, 221–253.CrossRefGoogle Scholar
  4. Aronson, R. B., Macintyre, I. G., Wapnick, C. M., & O'Neill, M. W. (2004). Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology, 85, 1876–1891.CrossRefGoogle Scholar
  5. Aronson, R. B., Macintyre, I. G., Lewis, S. A., & Hilbun, N. L. (2005). Emergent zonation and geographic convergence of coral reefs. Ecology, 86, 2586–2600.CrossRefGoogle Scholar
  6. Aronson, R. B., Bruno, J. F., Precht, W. F., Glynn, P. W., Harvell, C. D., Kaufman, L., et al. (2003). Causes of coral reef degradation. Science, 302, 1502–1504.CrossRefGoogle Scholar
  7. Norström, A. V., Nyström, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Marine Ecology Progress Series, 376, 295–306.CrossRefGoogle Scholar
  8. Bellwood, D. R., Hoey, A. S., & Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, 6, 281–285.CrossRefGoogle Scholar
  9. Berry, K. E., Seemann, J., Dellwig, O., Struck, U., Wild, C., Leinfelder, R. (2013). Sources and spatial distribution of heavy metals in scleractinian coral tissues and sediments from the Bocas del Toro Archipelago, Panama. Environ Monit Assess:1–11.Google Scholar
  10. Burke, L., Maidens, J., Spalding, M., Kramer, P., Green, E., Greenhalgh, S., Nobles, H., Kool, J. (2004). Reefs at risk in the Caribbean. World Resources Institute Washington DC.Google Scholar
  11. Carballo-Bolaños, R., Seemann, J., Gonzalez, C. T. (2012). A field identification guide to hard corals of Bocas del Toro Archipelago, Panama. Smithsonian Tropical Research Institute,
  12. Cesar, H., Burke, L. and Pet-Soede L. (2003). The economics of worldwide coral reef degradation. Cesar Environmental Economics Consulting (CEEC) 23.Google Scholar
  13. Collin, R. (2005). Ecological monitoring and biodiversity surveys at the smithsonian tropical research Institute's Bocas Del Toro research station. Caribbean Journal of Science, 41, 367–373.Google Scholar
  14. Collin, R., D’Croz, L., Gondola, P., & Rosario, J. B. D. (2009). Climate and hydrological factors affecting variation in chlorophyll concentration and water clarity in the Bahia Almirante, Panama. Smithsonian Contributions to the Marine Sciences, 38, 324–334.Google Scholar
  15. Collin, R., Diaz, M. C., Norenburg, J. L., Rocha, R., Sanchez, J. A., Schulz, A., et al. (2005). Photographic identification guide to some common marine invertebrates of Bocas Del Toro, Panama. Caribbean Journal of Science, 41, 638–707.Google Scholar
  16. Cooper, T. F., Uthicke, S., Humphrey, C., & Fabricius, K. E. (2007). Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuarine, Coastal and Shelf Science, 74, 458–470.CrossRefGoogle Scholar
  17. Costa, O. S., Jr., Nimmo, M., & Attrill, M. J. (2008). Coastal nutrification in Brazil: a review of the role of nutrient excess on coral reef demise. Journal of South American Earth Sciences, 25, 257–270.CrossRefGoogle Scholar
  18. D’Croz, L., Del Rosario, J. B., & Gondola, P. (2005). The effect of fresh water runoff on the distribution of dissolved inorganic nutrients and plankton in the Bocas del Toro Archipelago, Caribbean Panama. Caribbean Journal of Science, 41, 414–429.Google Scholar
  19. De'ath, G., & Fabricius, K. (2010). Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications, 20, 840–850.CrossRefGoogle Scholar
  20. Diaz, M. C., & Rützler, K. (2001). Sponges: An essential component of Caribbean coral reefs. Bulletin of Marine Science, 69, 535–546.Google Scholar
  21. Dominici-Arosemena, A., & Wolff, M. (2005). Reef fish community structure in Bocas del Toro (Caribbean, Panama): gradients in habitat complexity and exposure. Caribbean Journal of Science, 41, 613–637.Google Scholar
  22. Edinger, E. N., Jompa, J., Limmon, G. V., Widjatmoko, W., & Risk, M. J. (1998). Reef degradation and coral biodiversity in Indonesia: effects of land-based pollution, destructive fishing practices and changes over time. Mar Poll Bull, 36, 617–630.CrossRefGoogle Scholar
  23. Edinger, E. N., Limmon, G. V., Jompa, J., Widjatmoko, W., Heikoop, J. M., & Risk, M. J. (2000). Normal coral growth rates on dying reefs: Are coral growth rates good indicators of reef health? Mar Poll Bull, 40, 404–425.CrossRefGoogle Scholar
  24. Elmhirst, T., Connolly, S., & Hughes, T. (2009). Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs, 28, 949–957.CrossRefGoogle Scholar
  25. Fichez, R., Adjeroud, M., Bozec, Y. M., Breau, L., Chancerelle, Y., Chevillon, C., et al. (2005). A review of selected indicators of particle, nutrient and metal inputs in coral reef lagoon systems. Aquatic Living Resources, 18, 125–147.CrossRefGoogle Scholar
  26. Fry, B., & Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow on marine and freshwater ecosystems. Contributions in Marine Science, 27, 13–47.Google Scholar
  27. Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958–960.CrossRefGoogle Scholar
  28. Gartner, A., Lavery, P., & Smit, A. (2002). Use of delta 15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal. Marine Ecology-Progress Series, 235, 63–73.CrossRefGoogle Scholar
  29. Glynn, P. W. (1996). Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol, 2, 495–509.CrossRefGoogle Scholar
  30. Greb, L., Saric, B., Seyfried, H., Broszonn, T., Brauch, S., Gugau, G., et al. (1996). Ökologie und Sedimentologie eines rezenten Rampensystems an der Karibikküste von Panamá. Profil, 10, 1–168.Google Scholar
  31. Greer, L., Jackson, J. E., Curran, H. A., Guilderson, T., & Teneva, L. (2009). How vulnerable is Acropora cervicornis to environmental change? Lessons from the early to middle Holocene. Geology, 37, 263.CrossRefGoogle Scholar
  32. Grimsditch, G., & Salm, R. (2006). Coral reef resilience and resistance to bleaching. Gland, Switzerland: IUCN.Google Scholar
  33. Guerrón-Montero, C. (2005). Marine Protected Areas in Panama: Grassroots Activism and Advocacy. Human Organization, 64, 360–373.Google Scholar
  34. Guzmán, H. M. (2003). Caribbean coral reefs of Panama: Present status and future perspectives. In J. Cortes (Ed.), Latin American Coral Reefs Report (pp. 241–274). Amsterdam: Elsevier Science B.V.CrossRefGoogle Scholar
  35. Guzmán, H. M., & Jiménez, C. E. (1992). Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar Poll Bull, 24, 554–561.CrossRefGoogle Scholar
  36. Guzmán, H. M., & Guevara, C. A. (1998a). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Revista de Biología Tropical, 46, 601–623.Google Scholar
  37. Guzmán, H. M., & Guevara, C. A. (1998b). Arrecifes coralinos de Bocas del Toro, Panamá: II. Distribución, estructura y estado de conservación de los arrecifes de las Islas Bastimentos, Solarte, Carenero y Colón. Revista de Biología Tropical, 46, 889–912.Google Scholar
  38. Guzmán, H. M., & Guevara, C. A. (1999). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de las islas Pastores, Crisobal, Popa y Cayo. Aqua Rev Biol Trop, 47, 659–675.Google Scholar
  39. Guzmán, H. M., & Guevara, C. A. (2001). Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de Península Valiente. Revista de Biología Tropical, 49, 53–66.Google Scholar
  40. Guzmán, H. M., & García, E. M. (2002). Mercury levels in coral reefs along the Caribbean coast of Central America. Mar Poll Bull, 44, 1415–1420.CrossRefGoogle Scholar
  41. Guzmán, H. M., Barnes, P. A. G., Lovelock, C. E., & Feller, I. C. (2005). A site description of the CARICOMP mangrove, seagrass and coral reef sites in Bocas del Toro. Panama Caribb J Sci, 41, 430–440.Google Scholar
  42. Hawkins, J. P., Roberts, C. M., Hof, T. V., de Meyer, K., Tratalos, J., & Aldam, C. (1998). Effects of recreational scuba diving on Caribbean coral and fish communities. Conservation Biology, 13, 888–897.CrossRefGoogle Scholar
  43. Henkel, T. P., & Pawlik, J. R. (2005). Habitat use by sponge-dwelling brittlestars. Marine Biology, 146, 301–313.CrossRefGoogle Scholar
  44. Hodgson, G. (1999). A global assessment of human effects on coral reefs. Mar Poll Bull, 38, 345–355.CrossRefGoogle Scholar
  45. Hodgson, G. (2000). Coral reef monitoring and management using Reef Check. JICZM, 1, 169–176.Google Scholar
  46. Hodgson, G., Maun, L., Shuman, C. (2004). Reef Check Survey Manual. Reef Check, Institute of the Environment, University of California, Los Angeles, CA.Google Scholar
  47. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.CrossRefGoogle Scholar
  48. Houlbrèque, F., & Ferrier-Pagès, C. (2009). Heterotrophy in tropical scleractinian corals. Biological Reviews, 84, 1–17.CrossRefGoogle Scholar
  49. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265, 1547–1551.CrossRefGoogle Scholar
  50. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933.CrossRefGoogle Scholar
  51. Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., et al. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17, 360–365.CrossRefGoogle Scholar
  52. Jackson, J. B. C., & Buss, L. (1975). Alleopathy and spatial competition among coral reef invertebrates. PNAS, 72, 5160–5163.CrossRefGoogle Scholar
  53. Johannes, R. E. (1975). Chapter 2. Pollution and Degradation of Coral Reef Communities. In: Wood EJF, Johannes RE (eds) Elsevier Oceanography Series. Elsevier, pp13-51.Google Scholar
  54. Kaufmann, K. W., & Thompson, R. C. (2005). Water temperature variation and the meteorological and hydrographic environment of Bocas del Toro, Panama. Caribbean Journal of Science, 41, 392–413.Google Scholar
  55. Lapointe, B. E. (1997). Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnology and Oceanography, 42, 1119–1131.CrossRefGoogle Scholar
  56. Leinfelder, R. R., Seemann, J., Heiss, G. A., Struck, U. (2012). Could ‘ecosystem atavisms’ help reefs to adapt to the Anthropocene? Proc 12th Int Coral Reef Symp ICRS2012_2B_2:5.Google Scholar
  57. Lewis, J. B. (1964). Feeding and digestion in the tropical sea urchin Diadema antillarum philippi. Canadian Journal of Zoology, 42, 549–557.CrossRefGoogle Scholar
  58. Linton, D. M., & Warner, G. F. (2003). Biological indicators in the Caribbean coastal zone and their role in integrated coastal management. Ocean and Coastal Management, 46, 261–276.CrossRefGoogle Scholar
  59. Lirman, D., Orlando, B., Maciá, S., Manzello, D., Kaufman, L., Biber, P., et al. (2003). Coral communities of Biscayne Bay, Florida and adjacent offshore areas: diversity, abundance, distribution, and environmental correlates. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 121–135.CrossRefGoogle Scholar
  60. Macko, S., Ostrom, N. (1994). Pollution studies using stable isotopes. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publishing.Google Scholar
  61. Marshall, P. A., & Baird, A. H. (2000). Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs, 19, 155–163.CrossRefGoogle Scholar
  62. McCann, K. S. (2000). The diversity stability debate. Nature, 405, 228–233.CrossRefGoogle Scholar
  63. Mejía, L. S., & Garzón-Ferreira, J. (2000). Estructura de comunidades de peces arrecifales en cuatro atolones del Archipiélago de San Andrés y Providencia (Caribe sur occidental). Revista de Biología Tropical, 48, 883–896.Google Scholar
  64. Mook, W. G. (2001). Environmental Isotopes in the hydrological cycle. Paris: Principles and application. Technical documents in hydrology.Google Scholar
  65. NOAA (2010) NOAA Coral Reef Watch operational 50-km satellite coral bleaching degree heating weeks product. NOAA Coral Reef Watch,
  66. Oxenford, H., Roach, R., Brathwaite, A., Nurse, L., Goodridge, R., Hinds, F., et al. (2008). Quantitative observations of a major coral bleaching event in Barbados, Southeastern Caribbean. Climatic Change, 87, 435–449.CrossRefGoogle Scholar
  67. Porter, J. W. (1974). Community structure of coral reefs on opposite sides of the Isthmus of Panama. Science, 186, 543.CrossRefGoogle Scholar
  68. Rodríguez, J., & Villamizar, E. (2000). Reef fishes community structure of Playa Mero, Parque Nacional Morrocoy, Venezuela. Revista de Biología Tropical, 48, 107.Google Scholar
  69. Rogers, C. S. (1990). Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62, 185–202.CrossRefGoogle Scholar
  70. Saric, M. B. (2005). Sedimentologie und Geobiologie von Riffassoziationen in der Bahía Almirante (Archipel von Bocas del Toro, Panamá). München: Ludwig-Maximilians-Universität.Google Scholar
  71. Sawall, Y., Teichberg, M., Seemann, J., Litaay, M., Jompa, J., & Richter, C. (2011). Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia). Coral Reefs, 30, 841–853.CrossRefGoogle Scholar
  72. Seemann, J. (2013). The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. Journal of Experimental Marine Biology and Ecology, 442, 88–95.CrossRefGoogle Scholar
  73. Seemann, J., Sawall, Y., Auel, H., & Richter, C. (2012a). The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids, 48, 275–286.CrossRefGoogle Scholar
  74. Seemann, J., Carballo-Bolaños, R., Berry, K. L., González, C. T., Richter, C., Leinfelder, R. R. (2012b). Importance of heterotrophic adaptations of corals to maintain energy reserves. Proc 12th Int Coral Reef Symp ICRS2012_19A_4:6.Google Scholar
  75. Selig, E. R., & Bruno, J. F. (2010). A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE, 5, e9278.CrossRefGoogle Scholar
  76. Smith V (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10,126–139.Google Scholar
  77. Sofonia, J. J., & Anthony, K. R. N. (2008). High-sediment tolerance in the reef coral Turbinaria mesenterina from the inner Great Barrier Reef lagoon (Australia). Estuarine, Coastal and Shelf Science, 78, 748–752.CrossRefGoogle Scholar
  78. Spurgeon, J. P. G. (1992). The economic valuation of coral reefs. Mar Poll Bull, 24, 529–536.CrossRefGoogle Scholar
  79. Van Duin, E. H. S., Blom, G., Los, F. J., Maffione, R., Zimmerman, R., Cerco, C. F., et al. (2001). Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiol, 444, 25–42.CrossRefGoogle Scholar
  80. Weber, M., Lott, C., & Fabricius, K. E. (2006). Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology, 336, 18–32.CrossRefGoogle Scholar
  81. Wilkinson, C. R., & Cheshire, A. C. (1990). Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Marine Ecology Progress Series, 67, 285–294.CrossRefGoogle Scholar
  82. Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., & Polunin, N. V. C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol, 12, 2220–2234.CrossRefGoogle Scholar
  83. Yoshioka, P. M., & Yoshioka, B. B. (1989). Effects of wave energy, topographic relief and sediment transport on the distribution of shallow-water gorgonians of Puerto Rico. Coral Reefs, 8, 145–152.CrossRefGoogle Scholar
  84. Zea, S. (1993). Cover of sponges and other sessile organisms in rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea. Caribbean Journal of Science, 29, 75–88.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Janina Seemann
    • 1
    • 2
    • 3
  • Cindy T. González
    • 4
  • Rodrigo Carballo-Bolaños
    • 2
  • Kathryn Berry
    • 2
    • 5
  • Georg A. Heiss
    • 1
  • Ulrich Struck
    • 3
  • Reinhold R. Leinfelder
    • 1
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Museum für NaturkundeBerlinGermany
  4. 4.Smithsonian Tropical Research InstitutePanamáRepublic of Panama
  5. 5.Centre for Tropical Water & Aquatic Ecosystem ResearchJames Cook UniversityTownsvilleAustralia

Personalised recommendations