Environmental Monitoring and Assessment

, Volume 186, Issue 2, pp 1281–1293 | Cite as

Development of a robust chromatographic method for the detection of chlorophenols in cork oak forest soils

  • Iain McLellan
  • Andrew Hursthouse
  • Calum Morrison
  • Adélia Varela
  • Cristina Silva Pereira


A major concern for the cork and wine industry is ‘cork taint’ which is associated with chloroanisoles, the microbial degradation metabolites of chlorophenols. The use of chlorophenolic compounds as pesticides within cork forests was prohibited in 1993 in the European Union (EU) following the introduction of industry guidance. However, cork produced outside the EU is still thought to be affected and simple, robust methods for chlorophenol analysis are required for wider environmental assessment by industry and local environmental regulators. Soil samples were collected from three common-use forests in Tunisia and from one privately owned forest in Sardinia, providing examples of varied management practice and degree of human intervention. These provided challenge samples for the optimisation of a HPLC-UV detection method. It produced recoveries consistently >75 % against a soil CRM (ERM-CC008) for pentachlorophenol. The optimised method, with ultraviolet (diode array) detection is able to separate and quantify 16 different chlorophenols at field concentrations greater than the limits of detection ranging from 6.5 to 191.3 μg/kg (dry weight). Application to a range of field samples demonstrated the absence of widespread contamination in forest soils at sites sampled in Sardinia and Tunisia.


HPLC Method development Quercus suberCork oak Chlorophenols Soils NATO Science for Peace 



The authors would like to thank UWS for a PhD studentship for IMcL, NATO Science for Peace (SfP 981674) and FC&T (POCTI/AMB/57374/2004) for part funding this research. Samples were collected following permission from AGRIS Sardegna, Sardinia and the Sylvo-Pastoral Institute of Tabarka, Tunisia. The authors wish to personally acknowledge colleagues from the Faculty of Science, University Hassan II- Aïn Chock, Casablanca, Morocco, Instituto di Enologia e Ingegneria agro-alimentare, Università Cattolica del Sacro Cuore, Piacenza, Italy, Centre de Recherche en Sciences et Technolgies de l’Eau, Solimnen, Tunisia, AGRIS Sardegna, Dipartimento della Ricerca per il Sughero e la Silvicoltura, Tempo Pausania, Italy for their help with sample collection and processing.


  1. Airoldi, F. P. S., Zuin, V. G., Landgraf, M. D., & Rezende, M. O. O. (2005). A simplified method for determination of pentachlorophenol and hexachlorobenzene in soil contaminated by industrial chemical residues. Environmentalist, 25, 47–49.CrossRefGoogle Scholar
  2. Álvarez-Rodríguez, M. L., López-Ocaña, L., López-Coronado, J. M., Rodríguez, E., Martínez, M. J., Larriba, G., et al. (2002). Cork taint of wines: role of the filamentous fungi isolcated from cork in the formation of 2,4,6-trichloroanisole by O methylation of 2,4,6-trichlorophenol. Applied and Environmental Microbiology, 68(12), 5860–5869.CrossRefGoogle Scholar
  3. Álvarez-Rodríguez, M. L., Recio, E., & Coque, J. J. R. (2009). The analysis of natural cork stoppers in transversal sections as an effective tool to determine the origin of the taint by 2,4,6-trichloroanisole. European Food Research and Technology, 230(1), 135–143.CrossRefGoogle Scholar
  4. Ben Mansoura, A., Garchi, S., & Daly, H. (2001). Analyzing forest users’ destructive behaviour in northern Tunisia. Land Use Policy, 18, 153–163.CrossRefGoogle Scholar
  5. Campillo, N., Aguinaga, N., Viñas, P., López-García, I., & Hernández-Córdoba, M. (2005). Capillary gas chromatography with atomic emission detection for determining chlorophenols in water and soil samples. Analytica Chimica Acta, 552, 182–189.CrossRefGoogle Scholar
  6. Carvalho, M. B., Martins, I., Leitão, M. C., Garcia, H., Rodrigues, C., San Romão, V., et al. (2009). Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. Journal of Industrial Microbiology and Biotechnology, 36(10), 1249–1256.CrossRefGoogle Scholar
  7. Cea, M., Seaman, J. C., Jara, A. A., Mora, M. L., & Diez, M. C. (2005). Describing chlorophenol sorption on variable-charge soil using the triple-layer model. Journal of Colloid and Interface Science, 292(1), 171–178.CrossRefGoogle Scholar
  8. Liège, C.E. (2006). International code of cork stopper manufacturing practices, Confédération Européenne du Liège.Google Scholar
  9. Chatonnet, P., Bonnet, S., Boutou, S., & Labadie, M. D. (2004). Identification and responsibility of 2,4,6-tribromoanisole in musty, corked odours in wine. Journal of Agricultural and Food Chemistry, 52(5), 1255–1262.CrossRefGoogle Scholar
  10. Coque, J. J. R., Álvarez-Rodríguez, M. L., & Larriba, G. (2003). Characterisation of an inducible chlorophenol o-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Applied and Environmental Microbiology, 69(9), 5089–5095.CrossRefGoogle Scholar
  11. Corley, J. (2003). Best practices in establishing detection and quantification limits for pesticide residues in foods. Handbook of residue analytical methods for agrochemicals. Wiley.Google Scholar
  12. Deng, J., Liu, C., Yu, L., & Zhou, B. (2010). Chromic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicology and Applied Pharmacology, 243(1), 87–95.CrossRefGoogle Scholar
  13. Derouiche, A., Sanda, Y. G., & Driss, M. R. (2004). Polychlorinated biphenyls in sediments from Bizerte Lagoon, Tunisia. Bulletin of Environmental Contamination and Toxicology, 73(5), 810–817.CrossRefGoogle Scholar
  14. Do Nascimento, N. R., Nicola, S. M. C., Rezende, M. O. O., Oliveira, T. A., & Öberg, G. (2004). Pollution by hexachlorobenzene and pentachlorophenol in the coastal plain of São Paulo state, Brazil. Geoderma, 121(3–4), 221–232.CrossRefGoogle Scholar
  15. Düring, R. A., Hoß, T., & Gäth, S. (2002). Depth distribution and bioavailability of pollutants in long-term differently tilled soils. Soil and Tillage Research, 66, 183–195.CrossRefGoogle Scholar
  16. Frankki, S., & Skyllberg, U. (2006). Chlorophenol binding to dissolved and particulate soil organic matter determined in controlled equilibrium systems. European Journal of Soil Science, 57(5), 655–664.CrossRefGoogle Scholar
  17. ISO (2002). Soil quality—Part 1: Guidance on the design of sampling procedures. International Organisation for Standarisation (ISO).Google Scholar
  18. Kähkönen, M. A., Tuomela, M., & Hatakka, A. (2007). Microbial activities in soils of a former sawmill area. Chemosphere, 67(3), 521–526.CrossRefGoogle Scholar
  19. Knuutinen, J., Palm, H., Hakala, H., Haimi, J., Huhta, V., & Salminen, J. (1990). Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. Chemosphere, 20(6), 609–623.CrossRefGoogle Scholar
  20. Lee, M. R., Yeh, Y. C., Hsiang, W. S., & Hwang, B. H. (1998). Solid-phase microextraction and gas chromatography–mass spectrometry for determining chlorophenols from landfill leaches and soil. Journal of Chromatography A, 806(2), 317–324.CrossRefGoogle Scholar
  21. Long, L., & Winefordner, J. D. (1983). Limit of detection: a closer look at the IUPAC definition. Analytical Chemistry, 55(7), 712A–714A.Google Scholar
  22. Martínez-Uruñuela, A., González-Sáiz, J. M., & Pizarro, C. (2005). Multiple solid-phase microextraction in a non-equilibrium situation application in quantatitve analysis of chlorophenols and chloroanisoles related to cork taint in wine. Journal of Chromatography A, 1089(1–2), 31–38.CrossRefGoogle Scholar
  23. Mazzoleni, V., Dallagiovanna, L., Trevisan, M., & Nicelli, M. (2005). Persistent organic pollutants in cork used for production of wine stoppers. Chemosphere, 58, 1547–1552.CrossRefGoogle Scholar
  24. Ng, L. L., Kumkumian, C., Williams, R. L. (1994). Reviewer guidance: validation of chromatographic methods. Center for Drug Evaluation and Research (CDER), 33 pp.Google Scholar
  25. Park, S.-K., & Bielefeldt, A. R. (2003). Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil. Water Research, 37(19), 4663–4672.CrossRefGoogle Scholar
  26. Pavoni, B., Berto, D., Rigoni, M., & Salizzato, M. (2000). Micropollutants and organic carbon concentrations in surface and deep sediments in the Tunisian coast near the city of Sousse. Marine Environmental Research, 49(2), 177–196.CrossRefGoogle Scholar
  27. Polese, L., & Ribeiro, M. L. (1998). Methods for determination of hexachlorobenzene and pentachlorophenol in soil samples. Talanta, 46(5), 915–920.CrossRefGoogle Scholar
  28. Reis, A. R. (2007). First project meeting. Personal communication to I. McLellanGoogle Scholar
  29. Sarrión, M. N., Santos, F. J., Moyano, E., & Galceran, M. T. (2003). Solid-phase microextraction liquid chromatography/tandem mass spectrometry for the analysis of chlorophenols in environmental samples. Rapid Communications in Mass Spectrometry, 17(1), 39–48.CrossRefGoogle Scholar
  30. Silva Pereira, C., Figueiredo Marques, J. J., & San Romão, M. V. (2000). Cork taint: Scientific knowledge and public perception — a critical review. Critical Reviews in Microbiology, 26(3), 147–162.CrossRefGoogle Scholar
  31. Silva Pereira, C., Hassen, A., Hursthouse, A., Blaghen, M., Mazzoleni, V. (2008). NATO SfP 981674: Preventive and remediation strategies for continuous elimination of polychlorinated phenols from forest soils and ground waters. 12 Month progress report.Google Scholar
  32. Strandberg, B., & Hites, R. A. (2001). Concentration of organochlorine pesticides in wine corks. Chemosphere, 44(4), 729–735.CrossRefGoogle Scholar
  33. UNAC, (2008). Initiative for labelling the wine closures type. In. União da Floresta Mediterrânica.Google Scholar
  34. Urbieta, I. T., Zavala, M. A., & Marañón, T. (2008). Human and non-human determinants of forest composition in southern Spain: Evidence of shifts towards cork oak dominance as a result of management over the past century. Journal of Biogeography, 35, 1688–1700.CrossRefGoogle Scholar
  35. Wei, M. C., & Jen, J. F. (2003). Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-electron-capture detection. Journal of Chromatography A, 1012(2), 111–118.CrossRefGoogle Scholar
  36. Whitfield, F. B., Hill, J. L., & Shaw, K. J. (1997). 2,4,6-Tribromophenol: a potential cause of mustiness in packaged food. Journal of Agricultural and Food Chemistry, 45(3), 889–893.CrossRefGoogle Scholar
  37. Zalacain, A., Alonso, G. L., Lorenzo, C., Iñiguez, M., & Salinas, M. R. (2004). Stir bar sorptive extraction for the analysis of wine cork taint. Journal of Chromatography A, 1033(1), 173–178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iain McLellan
    • 1
  • Andrew Hursthouse
    • 1
  • Calum Morrison
    • 1
  • Adélia Varela
    • 2
    • 3
  • Cristina Silva Pereira
    • 2
    • 4
  1. 1.Institute of Biomedical & Environmental Health Research, School of ScienceUniversity of the West of ScotlandPaisleyUK
  2. 2.Instituto de Biologia Experimental e Tecnológica, IBETOeirasPortugal
  3. 3.Instituto Nacional de Recursos Biológicos, INRBOeirasPortugal
  4. 4.Instituto de Tecnologia Química e Biológica–Universidade Nova de Lisboa (ITQB-UNL)OeirasPortugal

Personalised recommendations