Environmental Monitoring and Assessment

, Volume 186, Issue 1, pp 349–359

The effect of management systems and ecosystem types on bark regeneration in Himatanthus drasticus (Apocynaceae): recommendations for sustainable harvesting

  • Cristina Baldauf
  • Flavio Antonio Maës dos Santos
Article

Abstract

Bark and exudates are widely commercialized non-timber forest products. However, the ecological impacts of the harvesting of these products have seldom been studied. The aim of this study is to investigate the relationship of tree resilience to harvesting intensity in Himatanthus drasticus, a tree that is highly exploited in the Brazilian savanna (Cerrado) for its medicinal latex. Although the traded product is the latex, the traditional harvesting systems involve the removal of the bark of the trees to allow exploitation. A 3-year experiment was conducted in two different Cerrado ecosystems (open savanna and savanna woodland). Trees were debarked at four debarking intensities to simulate the effects of traditional management systems. Measurements of bark growth were taken every 6 months, and quantitative and qualitative indexes of bark regeneration were obtained. The mortality of the debarked trees was low and could not be related to the intensity of harvesting. No signs of attack by fungi or insects were recorded. Compared with other species exploited for bark, H. drasticus is very resilient to harvesting; however, bark regeneration is relatively slow. In both analyzed ecosystems, the regeneration indexes showed higher values in the controls than in the treatments, indicating that 3 years is not sufficient for total recovery of the rhytidome. Bark regeneration occurred primarily by sheet growth and was more rapid in open savanna than in savanna woodland. No differences in the rate of bark recovery were found among management treatments. Based on the results, sustainable harvesting guidelines are suggested for the species.

Keywords

Non-timber forest products Bark stripping Cerrado Brazilian savanna Medicinal plants 

References

  1. Baldauf, C., & Santos, F. A. M. (2013). Ethnobotany, traditional knowledge, and diachronic changes in non-timber forest products management: the case study of Himatanthus drasticus (Apocynaceae) in the Brazilian Savanna. Economic Botany, 67(2), 110–120.Google Scholar
  2. Borges Filho, H. C., & Felfili, J. M. (2003). Avaliação dos níveis de extrativismo da casca de barbatimão [Stryphnodendron adstringens (Mart.) Coville] no Distrito Federal, Brasil. Revista Árvore, 27(5), 735–745.CrossRefGoogle Scholar
  3. Botha, J., Witkowski, E., & Shackleton, C. (2004). The impact of commercial harvesting on Warburgia salutaris (‘pepper-bark tree’) in Mpumalanga, South Africa. Biodiversity and Conservation, 13(9), 1675–1698.CrossRefGoogle Scholar
  4. Cardoso, M. R. C. (2010). Desenvolvimento rural e sustentabilidade-o caso da mesorregião Chapada do Araripe. Brasília: Universidade de Brasílila.Google Scholar
  5. Catry, F. X., Moreira, F., Pausas, J. G., Fernandes, P. M., Rego, F., Cardillo, E., et al. (2012). Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE, 7(6), e39810.CrossRefGoogle Scholar
  6. Cavalcanti, A. C., & Lopes, O. F. (1994). Condições edafoclimáticas da Chapada do Araripe e viabilidade de produção sustentável de culturas. Brasília: EMBRAPA-SPI.Google Scholar
  7. Chungu, D., Muimba-Kankolongo, A., Roux, J., & Malambo, F. (2007). Bark removal for medicinal use predisposes indigenous forest trees to wood degradation in Zambia. Southern Hemisphere Forestry Journal, 69(3), 157–163.CrossRefGoogle Scholar
  8. Clark, D. A., & Clark, D. B. (1992). Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs, 62(3), 315–344.CrossRefGoogle Scholar
  9. Cocks, M., López, C., & Dold, T. (2011). Cultural importance of non-timber forest products: opportunities they pose for bio-cultural diversity in dynamic societies. In S. Shackleton, C. Shackleton, & P. Shanley (Eds.), Non-timber forest products (pp. 107–128). Berlin: Springer.CrossRefGoogle Scholar
  10. Cocks, M. L., & Dold, A. P. (2006). Cultural significance of biodiversity: the role of medicinal plants in urban African cultural practices in the Eastern Cape, South Africa. Journal of Ethnobiology, 26(1), 60–81.CrossRefGoogle Scholar
  11. Cunningham, A. (2001). Applied ethnobotany. People and plants conservation manual. London: Earthscan Publications Ltd.Google Scholar
  12. Cunningham, A., & Mbenkum, F. (1993). Sustainability of harvesting Prunus africana bark in Cameroon. People and Plants Working Paper, 2, 28. Paris.Google Scholar
  13. Delvaux, C. (2009). “Strip-trees”: the life after: responses to bark harvesting of medicinal tree species from Forêt Classée Des Monts Kouffé, Benin. University of Ghent.Google Scholar
  14. Delvaux, C., Sinsin, B., Darchambeau, F., & Van Damme, P. (2009). Recovery from bark harvesting of 12 medicinal tree species in Benin, West Africa. Journal of Applied Ecology, 46(3), 703–712.CrossRefGoogle Scholar
  15. Delvaux, C., Sinsin, B., & Van Damme, P. (2010). Impact of season, stem diameter and intensity of debarking on survival and bark re-growth pattern of medicinal tree species, Benin, West Africa. Biological Conservation, 143(11), 2664–2671.CrossRefGoogle Scholar
  16. Di Stasi, L. C. (1996). Plantas medicinais: arte e ciência: um guia de estudo interdisciplinar: Ed. Estadual Paulista: UNESP-Univ.Google Scholar
  17. Diederichs, N., McKean, S., & Wynberg, R. P. (2006). Conservation and trade regulations for medicinal plants. In N. Diederichs (Ed.), commercialising medicinal plants: a Southern African guide (pp. 9–19). Stellenbosh: Sun Press.Google Scholar
  18. Dujesiefken, D., & Liese, W. (1990). Einfluß der Verletzungszeit auf die Wundheilung bei Buche (Fagus sylvatica L.). Holz als Roh- und Werkstoff, 48(3), 95–99.CrossRefGoogle Scholar
  19. Dytham, C. (2011). Choosing and using statistics: a biologist’s guide. Oxford: Wiley-Blackwell.Google Scholar
  20. Efferth, T., & Greten, H. J. (2012). Medicinal and aromatic plant research in the 21st century. Medicinal and Aromatic Plants, 1, e110.Google Scholar
  21. Fasola, T. R., & Egunyomi, A. (2005). Nigerian usage of bark in phytomedicine. Ethnobotany Research and Applications, 3, 073–077.Google Scholar
  22. Felfili, J., & Junior, M. S. (1988). Distribuição dos diâmetros numa faixa de cerrado na fazenda Água Limpa em Brasília-DF. Acta Botanica Brasilica, 2(1–2), 85–104.CrossRefGoogle Scholar
  23. Fisher, J. B. (1981). Wound-healing by exposed secondary xylem in Adansonia (Bombacaceae). IAWA Bulletin, 2, 193–199.Google Scholar
  24. Freitas, A. V. L., Coelho, M. F. B., Maia, S. S. S., & Azevedo, R. A. B. (2012). Plantas medicinais: um estudo etnobotânico nos quintais do Sítio Cruz, São Miguel, Rio Grande do Norte, Brasil. Revista Brasileira de Biociências, 10(1), 48.Google Scholar
  25. Gaoue, O. G., & Ticktin, T. (2007). Impacts of bark and foliage harvest on Khaya senegalensis (Meliaceae) reproductive performance in Benin. Journal of Applied Ecology, 45(1), 34–40.CrossRefGoogle Scholar
  26. Geldenhuys, C. J., & Mitchell, D. (2006). Sustainable harvesting technologies. In N. Diederichs (Ed.), Commercializing medicinal plants: a Southern African guide (pp. 23–39). Stellenbosh: Sun Press.Google Scholar
  27. Geldenhuys, C. J., Syampungani, S., Meke, G. S., & Vermeulen, W. J. (2007). Response of different species to bark harvesting for traditional medicine in Southern Africa. In J. J. Bester, A. H. W. Seydack, T. Vorster, I. J. Van der Merwe, & S. Dzivhani (Eds.), Multiple use management of natural forests and woodlands: policy refinement and scientific progress (pp. 55–62). Pretoria: Department of Water Affairs and Forestry.Google Scholar
  28. Guariguata, M. R., & Gilbert, G. S. (1996). Interspecific variation in rates of trunk wound closure in a Panamanian lowland forest. Biotropica, 28(1), 23–29.CrossRefGoogle Scholar
  29. Guedje, N. M., Lejoly, J., Nkongmeneck, B.-A., & Jonkers, W. B. (2003). Population dynamics of Garcinia lucida (Clusiaceae) in Cameroonian Atlantic forests. Forest Ecology and Management, 177(1), 231–241.CrossRefGoogle Scholar
  30. Guedje, N. M., Zuidema, P. A., During, H., Foahom, B., & Lejoly, J. (2007). Tree bark as a non-timber forest product: the effect of bark collection on population structure and dynamics of Garcinia lucida Vesque. Forest Ecology and Management, 240(1), 1–12.CrossRefGoogle Scholar
  31. Hall, J. B., O’Brien, E. M., & Sinclair, F. L. (2000). Prunus africana: a monograph (vol. 18). Bangor: University of Wales, School of Agricultural and Forest SciencesGoogle Scholar
  32. Haq, F., Ahmad, H., & Alam, M. (2011). Traditional uses of medicinal plants of Nandiar Khuwarr catchment (District Battagram), Pakistan. Journal of Medicinal Plants Research, 5, 39–48.Google Scholar
  33. Hare, R. C. (1965). Contribution of bark to fire resistance of southern trees. Journal of Forestry, 63(4), 248–251.Google Scholar
  34. Juan, D., Hong-Li, X., De-Qiang, Z., Xin-Qiang, H., Min-Jie, W., Ying-Zhang, L., et al. (2006). Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics, 6(3), 881–895.CrossRefGoogle Scholar
  35. Kathe, W. (2006). Revision of the “Guidelines on the conservation of medicinal plants” by WHO, IUCN, WWF AND TRAFFIC In R. J. Bogers, L. E. Craker, & D. Lange (Eds.), Medicinal and aromatic plants (pp. 109–120): Springer.Google Scholar
  36. Köppen, W. (1948). Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica (pp. 479).Google Scholar
  37. Laird, S. A., McLain, R. J., & Wynberg, R. P. (2010). Wild product governance: finding policies that work for non-timber forest products. London: Earthscan/James & James.Google Scholar
  38. Leaman, D. J. (2004). The global strategy for plant conservation—what can it mean for medicinal plants? Newsletter of the Medicinal Plant Specialist Group, 9/10.Google Scholar
  39. Lucetti, D. L., Lucetti, E. C., Bandeira M. A., Veras, H. N., Silva, A. H., Leal, L. K., et al. (2010). Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. Journal of Inflammation, 7, 60.Google Scholar
  40. Malviya, J., Joshi, V., & Singh, K. (2012). Antimicrobial activity of some ethno-medicinal plants used by Baiga Tribes from Amarkantak, India. Advances in Life Science and Technology, 4, 19–26.Google Scholar
  41. Mariot, A. (2008). Fundamentos para o manejo de populações naturais de Drimys brasiliensis Miers-Winteraceae. Florianópolis: Universidade Federal de Santa Catarina.Google Scholar
  42. MDA. (2010). In M. D. Agrário (Ed.), Plano Territorial de Desenvolvimento Rural Sustentável: Território Cidadania do Cariri (p. 348). Fortaleza: Instituto Agropolos do Ceará.Google Scholar
  43. MMA. (2007). Áreas prioritárias para a conservação, uso sustentável e repartição de benefícios da biodiversidade brasileira: atualização - Portaria MMA Nº 09, 23 de janeiro de 2007. (pp. 300). Brasília: MMA/SBF.Google Scholar
  44. Monteiro, J. M., Lins Neto, E. M., Araújo, E. L., Amorim, E. L., & Albuquerque, U. P. (2011). Bark regeneration and tannin content in Myracrodruon urundeuva Allemão after simulation of extractive damages—implications to management. Environmental Monitoring and Assessment, 180(1), 31–39.CrossRefGoogle Scholar
  45. Mousinho, K. C., Oliveira, C. C., Ferreira, J. R. d. O., Carvalho, A. A., Magalhães, H. I. F., Bezerra, D. P., et al. (2011). Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel–Apocynaceae. Journal of ethnopharmacology, 137(1), 421–426.CrossRefGoogle Scholar
  46. Neely, D. (1988). Wound closure rates on trees. Journal of Arboriculture, 14, 250–254.Google Scholar
  47. Oliveira, P. S., & Marquis, R. J. (2002). The cerrados of Brazil: ecology and natural history of a neotropical savanna. New York: Columbia Univ Press.Google Scholar
  48. Pandey, A. K., & Mandal, A. K. (2012). Sustainable harvesting of Terminalia arjuna (Roxb.) Wight & Arnot (Arjuna) and Litsea glutinosa (Lour.) Robinson (Maida) bark in Central India. Journal of Sustainable Forestry, 31(3), 294–309.CrossRefGoogle Scholar
  49. Pandey, A. K., & Yadav, S. (2010). Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar). Pharmacognosy Research, 2(5), 309.Google Scholar
  50. Prance, G. T., & Prance, A. E. (1993). Bark. Portland: Timber Press.Google Scholar
  51. Puritch, G. S., & Mullick, D. B. (1975). Effect of water stress on the rate of non-suberized impervious tissue formation following wounding in Abies grandis. Journal of Experimental Botany, 26(6), 903–910.CrossRefGoogle Scholar
  52. R Development Core Team (2012). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  53. Rani, P., & Khullar, N. (2004). Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytotherapy Research, 18(8), 670–673.CrossRefGoogle Scholar
  54. Romero, C. (2006). Tree responses to stem damage. University of Florida.Google Scholar
  55. Romero, C., & Bolker, B. M. (2008). Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research, 38(3), 611–618.CrossRefGoogle Scholar
  56. Schippmann, U., Leaman, D., & Cunningham, A. B. (2006). A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In R. J. Bogers, L. E. C. L.E., & L. D. (Eds.), Medicinal and aromatic plants (vol. 17, pp. 75–95). Dordrecht: Springer.Google Scholar
  57. Schoonenberg, T., Pinard, M., & Woodward, S. (2003). Responses to mechanical wounding and fire in tree species characteristic of seasonally dry tropical forest of Bolivia. Canadian Journal of Forest Research, 33(2), 330–338.CrossRefGoogle Scholar
  58. Shanley, P., & Luz, L. (2003). Eastern Amazonian medicinals: marketing, use and implications of forest loss. BioScience, 53(6), 573–584.CrossRefGoogle Scholar
  59. Shanley, P., Pierce, A. R., Laird, S. A., & Guillén, A. (2002). Tapping the green market: certification and management of non-timber forest products. London: Earthscan/James & James.Google Scholar
  60. Silva, J. R. A., Rezende, C. M., Pinto, Â. C., Pinheiro, M. L., Cordeiro, M. C., Tamborini, E., et al. (1998). Triterpenic esters from Himatanthus sucuuba (Spruce) Woodson. Quimica Nova, 21(6), 702–704.CrossRefGoogle Scholar
  61. Sousa, E. L. d., Grangeiro, A. R. S., Bastos, I. V. G. A., Rodrigues, G. C. R., Anjos, F. B. R. d., Souza, I. A. d., et al. (2010). Antitumor activity of leaves of Himatanthus drasticus (Mart.) Plumel-Apocynaceae (janaguba) in the treatment of Sarcoma 180 tumor. Brazilian Journal of Pharmaceutical Sciences, 46(2), 199–203.CrossRefGoogle Scholar
  62. Souza, W., Stinghen, A., & Santos, C. (2004). Antimicrobial activity of alkaloidal fraction from barks of Himatanthus lancifolius. Fitoterapia, 75(7), 750–753.CrossRefGoogle Scholar
  63. Spina, A. P. (2004). Estudos taxonômico, micro-morfológico e filogenético do gênero Himatanthus Willd. ex Schult. (Apocynaceae: Rauvolfioideae-Plumerieae). Universidade Estadual de Campinas.Google Scholar
  64. Stewart, K. (2009). Effects of bark harvest and other human activity on populations of the African cherry (Prunus africana) on Mount Oku, Cameroon. Forest Ecology and Management, 258(7), 1121–1128.CrossRefGoogle Scholar
  65. Stobbe, H., Schmitt, U., Eckstein, D., & Dujesiefken, D. (2002). Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Annals of Botany, 89, 773–782.CrossRefGoogle Scholar
  66. Suleman, S., & Alemu, T. (2012). A survey on utilization of ethnomedicinal plants in Nekemte Town, East Wellega (Oromia), Ethiopia. Journal of Herbs, Spices & Medicinal Plants, 18(1), 34–57.CrossRefGoogle Scholar
  67. Sunderland, T. C. H., & Tako, C. T. (1999). The exploitation of Prunus africana on the island of Bioko, Equatorial Guinea—a report for the People and Plants Initiative. In IUCN/SSC (Ed.), Medicinal Plant Specialist Group. Bonn.Google Scholar
  68. Ticktin, T., & Shackleton, C. (2011). Harvesting non-timber forest products sustainably: opportunities and challenges. In S. Shackleton, C. Shackleton, & P. Shanley (Eds.), Non-timber forest products in the global context (pp. 149–169). Heidelberg: Springer.CrossRefGoogle Scholar
  69. Toledo, B., Galetto, L., & Colantonio, S. (2009). Ethnobotanical knowledge in rural communities of Cordoba (Argentina): the importance of cultural and biogeographical factors. Journal of Ethnobiology and Ethnomedicine, 5(1), 40.CrossRefGoogle Scholar
  70. Uniyal, S. K. (2013). Bark removal and population structure of Taxus wallichiana Zucc. in a temperate mixed conifer forest of western Himalaya. Environmental Monitoring and Assessment, 185(4), 2921–2928.Google Scholar
  71. Vermeulen, W., & Geldenhuys, C. (2004). Experimental protocols and lessons learnt from strip harvesting of bark for medicinal use in the southern Cape forests. FRP-DFID Project R8305 Report (pp. 14). UK: Wild Resources Limited.Google Scholar
  72. WHO (1993). Guidelines on the conservation of medicinal plants. Geneva: World Health Organization.Google Scholar
  73. WHO (2001). General guidelines for methodologies on research and evaluation of traditional medicine. Geneva: World Health Organization.Google Scholar
  74. WHO (2002). Traditional medicine strategy 2002–2005. Geneva: World Health Organization.Google Scholar
  75. WHO (2003). WHO guidelines on Good Agricultural and Field Collection Practices (GACP) for medicinal plants. Geneva: World Health Organization.Google Scholar
  76. Zardo, R. N., & Henriques, R. P. B. (2011). Growth and fruit production of the tree Caryocar brasiliense in the Cerrado of central Brazil. Agroforestry Systems, 82(1), 15–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Cristina Baldauf
    • 1
    • 2
  • Flavio Antonio Maës dos Santos
    • 1
  1. 1.Department of Plant BiologyState University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Animal SciencesFederal Rural University of Semiarid Region (UFERSA)MossoróBrazil

Personalised recommendations