Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 12, pp 9751–9762 | Cite as

A comparison of emission calculations using different modeled indicators with 1-year online measurements

  • Bernd Lengers
  • Inga Schiefler
  • Wolfgang Büscher
Article

Abstract

The overall measurement of farm level greenhouse gas (GHG) emissions in dairy production is not feasible, from either an engineering or administrative point of view. Instead, computational model systems are used to generate emission inventories, demanding a validation by measurement data. This paper tests the GHG calculation of the dairy farm-level optimization model DAIRYDYN, including methane (CH4) from enteric fermentation and managed manure. The model involves four emission calculation procedures (indicators), differing in the aggregation level of relevant input variables. The corresponding emission factors used by the indicators range from default per cow (activity level) emissions up to emission factors based on feed intake, manure amount, and milk production intensity. For validation of the CH4 accounting of the model, 1-year CH4 measurements of an experimental free-stall dairy farm in Germany are compared to model simulation results. An advantage of this interdisciplinary study is given by the correspondence of the model parameterization and simulation horizon with the experimental farm’s characteristics and measurement period. The results clarify that modeled emission inventories (2,898, 4,637, 4,247, and 3,600 kg CO2-eq. cow−1 year−1) lead to more or less good approximations of online measurements (average 3,845 kg CO2-eq. cow−1 year−1 (±275 owing to manure management)) depending on the indicator utilized. The more farm-specific characteristics are used by the GHG indicator; the lower is the bias of the modeled emissions. Results underline that an accurate emission calculation procedure should capture differences in energy intake, owing to milk production intensity as well as manure storage time. Despite the differences between indicator estimates, the deviation of modeled GHGs using detailed indicators in DAIRYDYN from on-farm measurements is relatively low (between −6.4 % and 10.5 %), compared with findings from the literature.

Keywords

Agricultural modeling GHG measurement Validity of modeled GHGs Emission indicators Dairy farm methane emissions DAIRYDYN Enteric fermentation 

Notes

Acknowledgments

The development of the DAIRYDYN model is funded by a grant from the German Science Foundation (DFG), reference number HO 3780/2-1. The authors are grateful for the cooperation of the Chamber of Agriculture of North-Rhine Westphalia, where the measurements were carried out. This investigation was funded by the Landwirtschaftliche Rentenbank and the Federal Ministry of Food Agriculture and Consumer Protection, Germany. The authors want to thank the reviewers as well as the editor for helpful suggestions and a straightforward review process.

References

  1. Alcamo, J., Shaw, R., & Hordijk, L. (1990). The RAINS model of acidification. Science and strategies in Europe. Dordrecht: Kluwer Academic.Google Scholar
  2. Bannink, A., van Schijndel, M. W., & Dijkstra, J. (2011). A model of enteric fermentation in dairy cows to estimate methane emission on the Dutch National Inventory Report using the IPCC Tier 3 approach. Animal Feed Science and Technology, 166–167, 603–618.CrossRefGoogle Scholar
  3. Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: from model realism to purpose of the model. Computational and Mathematical Organization Theory, 1, 57–71.CrossRefGoogle Scholar
  4. CIGR. (2002). Climatization of animal houses. In S. Pedersen & K. Sallvik (Eds.), Climatization of animal houses. Working group report on: heat and moisture production at animal and house level. Denmark: DIAS.Google Scholar
  5. DeCara, S., & Jayet, P. A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agricultural Economics, 27(3), 281–303.CrossRefGoogle Scholar
  6. Derno, M., Elsner, H., Paetow, E., Scholze, H., & Schweigel, M. (2009). Technical note: a new facility for continuous respiration measurements in lactating cows. Journal of Dairy Science, 92(6), 2804–2808.CrossRefGoogle Scholar
  7. Ellis, J. L., Bannink, A., France, J., Kebreab, E., & Dijkstra, J. (2010). Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Global Change Biology, 16, 3246–3256.CrossRefGoogle Scholar
  8. FAO. (2010). Greenhouse gas emissions from the dairy sector, a life cycle assessment. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  9. Garnsworthy, P., Craigon, J., Hernandez-Medrano, J., & Saunders, N. (2012). Variation among individual dairy cows in methane measurements made on farm during milking. Journal of Dairy Science, 95(6), 3181–3189.CrossRefGoogle Scholar
  10. Hagemann, M., Ndambi, A., Hemme, T., & Latacz-Lohmann, U. (2012). Contribution of milk production to global greenhouse gas emissions, an estimation based on typical farms. Environmental Science and Pollution Research, 19, 390–402.CrossRefGoogle Scholar
  11. Hensen, A., & Scharff, H. (2001). Methane emission estimates from landfills obtained with dynamic plume measurements. Water, Air, and Soil Pollution, 1, 455–464.Google Scholar
  12. Herrero, M., Gerber, P., Vellinga, T., Garnett, T., Leip, A., Opio, C., et al. (2011). Livestock and greenhouse gas emissions: the importance of getting the numbers rights. Animal Feed Science and Technology, 166–167, 779–782.CrossRefGoogle Scholar
  13. Hindrichsen, I. K., Wettenstein, H. R., Machmüller, A., Jörg, B., & Kreuzer, M. (2005). Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environmental Monitoring and Assessment, 107, 329–350.CrossRefGoogle Scholar
  14. Huth, F. W. (1995). Die Laktation des Rindes—Analyse, Einfluß, Korrektur. Stuttgart: Eugen Ulmer GmbH & Co.Google Scholar
  15. IBM (2011). IBM ILOG CPLEX Optimizer, High-performance mathematical programming solver for linear programming, mixed integer programming, and quadratic programming. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
  16. IPCC. (2006). In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Japan: IGES.Google Scholar
  17. Johnson, K., Huyler, M., Westberg, H., Lamp, B., & Zimmerman, P. (1994). Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science and Technology, 28, 359–362.CrossRefGoogle Scholar
  18. Kazenwadel, G., & Doluschitz, R. (1998). Modellierung auf Regionsebene durch Hochrechnung auf Basis einzelbetrieblicher Kennzahlen. Agrarinformatik, 1, 2–8.Google Scholar
  19. Kirchgessner, M., Windisch, W., Müller, H. L., & Kreuzer, M. (1991). Release of methane and of carbon dioxide by dairy cattle. Agribiological Research, 44, 91–102.Google Scholar
  20. Külling, D. R., Dohme, F., Menzi, H., Sutter, F., Lischer, P., & Kreuzer, M. (2002). Methane emissions of differently fed dairy cows and corresponding methane and nitrous oxide emissions from their manure during storage. Environmental Monitoring and Assessment, 79, 129–150.CrossRefGoogle Scholar
  21. Lengers, B., & Britz, W. (2012). The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach. Review of Agricultural and Environmental Studies, 93(2), 117–144.Google Scholar
  22. Lovett, D. K., Shalloo, L., Dillon, P., & O’Mara, F. P. (2006). A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agricultural Systems, 88, 156–179.CrossRefGoogle Scholar
  23. Mills, J. A., Dijkstra, J., Bannink, A., Cammell, S. B., Kebreab, E., & France, J. (2001). A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. Journal of Animal Science, 79, 1584–1597.Google Scholar
  24. Moe, P. W., & Tyrrell, H. F. (2010). Methane production in dairy cows. Journal of Dairy Science, 62(10), 1583–1586.CrossRefGoogle Scholar
  25. Niebaum, A. (2001). Quantifizierung gasförmiger Emissionen aus quergelüfteten Außenklimaställen für Mastschweine mit Hilfe der Tracergas-Technik. PhD thesis, Georg August Universität, Göttingen.Google Scholar
  26. Olesen, J.E., Weiske, A., Asman, W.A.H., Weisbjerg, M.R., Djurhuus, J. & Schelde, K. (2004). FarmGHG. A Model for Estimating Greenhouse Gas Emissions from Livestock Farms. Documentation. In DJF Internal Report No. 202, p. 54. Tjele, Denmark: Danish Institute of Agricultural Sciences.Google Scholar
  27. Samer, M., Müller, H., Fiedler, M., Ammon, C., Glaser, M., Berg, W., et al. (2011). Developing the 85Kr tracer gas technique for air exchange rate measurements in naturally ventilated animal buildings. Biosystems Engineering, 109(4), 276–287.CrossRefGoogle Scholar
  28. Schils, R. L. M., de Haan, M. H. A., Hemmer, J. G. A., van den Pol-van Dasselaar, A., de Boer, J. A., Evers, A. G., et al. (2007). DairyWise, a whole-farm dairy model. Journal of Dairy Science, 90, 5334–5346.CrossRefGoogle Scholar
  29. Schneider, F., Eichelser, R., & Neser, S. (2006). Emissionen aus freigelüfteten Ställen. Entwicklung von Messmethoden und Ergebnisse der Feldmessungen. Schriftenreihe der Bayrischen Landesanstalt für Landwirtschaft, 15(2006), 145–157.Google Scholar
  30. Seipelt, F. (1999). Quantifizierung und Bewertung gasförmiger Emissionen aus frei gelüfteten Milchviehställen mit Trauf-First-Lüftung. PhD thesis, Georg August Universität, Göttingen.Google Scholar
  31. Snell, H. G. J., Seipelt, F., & Van den Weghe, H. F. A. (2003). Ventilation rates and gaseous emissions from naturally ventilated dairy houses. Biosystems Engineering, 86(1), 67–73.CrossRefGoogle Scholar
  32. Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I., & Madsen, J. (2012). Methods for measuring and estimating methane emission from ruminants. Animals, 2, 160–183.CrossRefGoogle Scholar
  33. Tallec, T. & Hensen, A. (2011). Measurement methods comparison campaign of CH4 emissions by grazing livestock. http://www.ttorch.org/wp-content/uploads/2011/03/FinalReport_3144.pdf. Accessed 06 March 2012.
  34. UBA (2009). Nationaler Inventarbericht zum DeutschenTreibhausgasinventar 1990–2007, Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2009. Climate Change 02/09.Google Scholar
  35. Weiske, A., Vabitsch, A., Olesen, J. E., Schelde, K., Michel, J., Friedrich, R., et al. (2006). Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agriculture, Ecosystems and Environment, 112, 221–232.CrossRefGoogle Scholar
  36. Zhang, G., Strom, J. S., Li, B., Rom, H. B., Morsing, S., Dahl, P., et al. (2005). Emission of ammonia and other contaminant gases from naturally ventilated dairy cattle buildings. Biosystems Engineering, 92(3), 355–364.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bernd Lengers
    • 1
  • Inga Schiefler
    • 2
  • Wolfgang Büscher
    • 2
  1. 1.Institute of Food and Resource EconomicsBonn UniversityBonnGermany
  2. 2.Institute of Agricultural EngineeringBonn UniversityBonnGermany

Personalised recommendations