Environmental Monitoring and Assessment

, Volume 185, Issue 11, pp 9521–9529 | Cite as

Monitoring toxic cyanobacteria and cyanotoxins (microcystins and cylindrospermopsins) in four recreational reservoirs (Khon Kaen, Thailand)

  • Theerasak SomdeeEmail author
  • Tunyaluk Kaewsan
  • Anchana Somdee


The toxic cyanobacterial communities of four recreational reservoirs (Bueng Kaen Nakhon, Bueng Thung Sang, Bueng Nong Khot, and Bueng See Than) in Amphur Muang, Khon Kaen Province, Thailand, were investigated. Water samples were collected via monthly sampling from June to October 2011 for the study on the diversity and density of toxic cyanobacteria and toxin quantification. The main toxic cyanobacteria present in these reservoirs were Aphanocapsa sp., Cylindrospermopsis sp., Leptolyngbya sp., Limnothrix sp., Microcystis sp., Oscillatoria sp., Planktolyngbya sp., Planktotrix sp., and Pseudanabaena sp. The dominant bloom-forming genera in the water samples from Bueng Nong Khot and Bueng See Than were Microcystis sp. and Cylindrospermopsis sp., respectively. Enzyme-linked immunosorbent assays specific for cyanotoxins were performed to detect and quantify microcystins and cylindrospermopsins, with the highest average microcystins content (0.913 μgL−1) being found in the sample collected from Bueng Nong Khot and the highest average cylindrospermopsins content (0.463 μgL−1) being found in the sample collected from Bueng See Than. The application of 16S rRNA analyses to cyanobacterial isolates BKN2, BNK1, BNK2, and BST1 indicated that these isolates are most closely related to Limnothrix planctonica (JQ004026) (98 % similarity), Leptolyngbya sp. (FM177494) (99 % similarity), Microcystis aeruginosa (DQ887510) (99 % similarity), and Limnothrix redekei (FM177493) (99 % similarity), respectively.


Toxic cyanobacteria Cylindrospermopsis Microcystis Microcystins Cylindrospermopsins 



The authors would like to thank Prof. Dr. Nison Sattayasai for his assistance with the genetic analysis and useful discussions. We are grateful to The Regional Environmental Office, The Ministry of Natural Resources and Environment of the Kingdom of Thailand, and the Environmental section of Khon Kaen Municipality, Khon Kaen, Thailand, for providing some physical and chemical water characteristics of the reservoirs. Financial support from the Faculty of Science, Khon Kaen University, Thailand, is also gratefully acknowledged.


  1. Bolch, C. J. S., & Blackburn, S. I. (1996). Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology, 8(1), 5–13.CrossRefGoogle Scholar
  2. Bormans, M., Ford, P. W., & Fabbro, L. (2005). Spatial and temporal variability in cyanobacterial populations controlled by physical processes. Journal of Plankton Research, 27(1), 61–70.CrossRefGoogle Scholar
  3. Bradt, S., & Villena, M. J. (2002). Detection of microcystins in the coastal lagoon La Albufera de Valencia, Spain by an enzyme-linked immunosorbent assay (E.L.I.S.A.). Limnetica, 20(2), 187–196.Google Scholar
  4. Chapman, A. D., & Schelske, C. L. (1997). Recent appearance of Cylindrospermopsis (cyanobacteria) in five hypereutrophic Florida Lake. Journal of Phycology, 33(2), 191–195.CrossRefGoogle Scholar
  5. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15.Google Scholar
  6. Duy, T. N., Lam, P. K. S., Shaw, G. R., & Connell, D. W. (2000). Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Reviews of Environmental Contamination and Toxicology, 163, 113–186.CrossRefGoogle Scholar
  7. El-Shehawy, R., Gorokhova, E., Fernández-Piñas, F., & del Campo, F. F. (2012). Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Research, 46(5), 1420–1429.CrossRefGoogle Scholar
  8. Fastner, J., Heinze, R., Humpage, A. R., Mischke, U., Eaglesham, G. K., & Chorus, I. (2003). Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (cyanobacteria) isolates. Toxicon, 42(3), 313–321.CrossRefGoogle Scholar
  9. Ferrão-Filho, A. S., & Kozlowsky-Suzuki, B. (2011). Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs, 9(12), 2729–2772.CrossRefGoogle Scholar
  10. Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125.CrossRefGoogle Scholar
  11. Furtado, A. L. F. F., Calijuri, M. C., Lorenzi, A. S., Honda, R. Y., Genuario, D. B., & Fiore, M. F. (2009). Morphological and molecular characterization of cyanobacterium from a Brazillian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia, 627(1), 195–209.CrossRefGoogle Scholar
  12. Grabowska, M., & Pawlik-Skowrońska, B. (2008). Replacement of Chroococcales and Nostocales by Oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir. Oceanological and Hydrobiological Studies, 37(4), 23–33.CrossRefGoogle Scholar
  13. Hoshaw, R., & Rosowski, J. R. (1973). Method for microscopic algae. In J. R. Stein (Ed.), Handbook of phycological methods, culture methods and growth measurements (pp. 53–56). London: Cambridge University Press.Google Scholar
  14. Jayatissa, L. P., Silva, E. I. L., McElhiney, J., & Lawton, L. A. (2006). Occurrence of toxigenic cyanobacterial blooms in freshwaters of Sri Lanka. Systematic and Applied Microbiology, 26(2), 156–164.CrossRefGoogle Scholar
  15. Jones, W. W., & Sauter, S. (2005). Office of water quality. Bloomington: Idiana University.Google Scholar
  16. Kim, B. H., Sang, M., Hwang, S. J., & Han, M. S. (2008). In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: implications for biological bloom control. Limnology and Oceanography: Methods, 6, 513–522.CrossRefGoogle Scholar
  17. Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil/2nd part: Oscillatoriales. In B. Büdel, G. Gärtner, L. Krienitz, & M. Schagerl (Eds.), Süsswasserflora von Mitteleuropa, Vol 19(2). (pp. 759). Heidelberg: Elsevier.Google Scholar
  18. Liu, Y. M., Chen, W., Li, D. H., Huang, Z. B., Shen, Y. W., & Liu, Y. D. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. Journal of Environmental Sciences, 23(4), 575–581.CrossRefGoogle Scholar
  19. Mahakhant, A., Seetachan, P., Limpanussorn, J., Tungtananuwat, M., Ratanachot, P., & Arunpairojana, V. (2001). Survey of toxicogenic cyanobacterial blooms in water sources in military bases of Thailand. In The 5th International Conference on Toxic Cyanobacteria, Queensland.Google Scholar
  20. Mitsuhiro, Y., Takashi, Y., Yukari, T., Naohiko, H., & Shingo, H. (2007). Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters, 226(1), 49–53.Google Scholar
  21. Mohamed, Z. A., & Al Shehri, A. M. (2010). Microcystin production in epiphytic cyanobacteria on submerged macrophytes. Toxicon, 55(7), 1346–1352.CrossRefGoogle Scholar
  22. Mur, L. R., Skulberg, O. M., & Utkilen, H. (1999). Cyanobacteria in the environment. In I. Chorus & J. Bartran (Eds.), Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management (pp. 15–40). London: E&FN Spon.Google Scholar
  23. Paerl, H. W. (1996). Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications. Microscopy Research and Technique, 33(1), 47–72.CrossRefGoogle Scholar
  24. Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology. doi: 10.1007/s00248-012-0159-y.Google Scholar
  25. Paerl, H. W., & Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363.CrossRefGoogle Scholar
  26. Pearson, L. A., & Neilan, B. A. (2008). The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology, 19(3), 281–288.CrossRefGoogle Scholar
  27. Peerapornpisal, Y., Sonthichai, W., Suchotiratana, M., Lipigorngoson, S., Ruangyuttikarn, W., Ruangrit, K., et al. (2002). Survey and monitoring of toxic cyanobacteria in water resources for water supplies and fisheries in Thailand. Chiang Mai Journal of Science, 29(2), 71–79.Google Scholar
  28. Peerapornpisal, Y., Phalaraksh, C., Kunpradid, T., Pekkoh, J., & Nivasabutr, S. (2009). Survey and monitoring of water samples and aquatic animals in standing water. Chiang Mai: Chiang Mai University (in Thai).Google Scholar
  29. Pongswat, S., Thammathaworn, S., Peerapornpisal, Y., Thanee, N., & Somsiri, C. (2004). Diversity of phytoplankton in the Rama IX Lake, a man-made lake, Pathumthani province, Thailand. Science Asia, 30(3), 261–267.CrossRefGoogle Scholar
  30. Pouría, S., de Andrade, A., Barbosa, J., Cavalcanti, R. L., Berreto, V. S. T., Ward, C. J., et al. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet, 352(1921), 21–26.CrossRefGoogle Scholar
  31. Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepisto, I., Rintala, J., Mankiewicz-Boczek, J., et al. (2006). Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Applied and Environmental Microbiology, 72(9), 6101–6110.CrossRefGoogle Scholar
  32. Richardson, L. L., Sekar, R., Myers, J. L., Gantar, M., Voss, J. D., Kaczmarsky, L., et al. (2007). The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiology Letters, 272(2), 182–187.CrossRefGoogle Scholar
  33. Robarts, R. D., & Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine Freshwater Research, 21(3), 391–399.CrossRefGoogle Scholar
  34. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.Google Scholar
  35. Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartran (Eds.), Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management (pp. 41–111). London: E&FN Spon.Google Scholar
  36. Spoof, L., Berg, K. A., Rapala, J., Lahti, K., Lepisto, L., Metcalf, J. S., et al. (2006). First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environmental Toxicology, 21(6), 552–560.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Theerasak Somdee
    • 1
    Email author
  • Tunyaluk Kaewsan
    • 1
  • Anchana Somdee
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations