Environmental Monitoring and Assessment

, Volume 185, Issue 11, pp 9177–9189 | Cite as

Statistical distributions of trace metal concentrations in the northwestern Mediterranean atmospheric aerosol

  • Thomas Robin
  • Lionel Guidi
  • Aurélie Dufour
  • Christophe Migon
Article

Abstract

The concentrations of 11 crustal and anthropogenic trace metals (Li, Al, V, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) were measured from 2006 to 2008 in the atmospheric aerosol at a northwestern Mediterranean coast (station of Cap Ferrat, situated on the southeastern coast of France). Statistical models (lognormal, Weibull, and gamma) that best represented the trace metal distribution for this environment are described. The lognormal model was selected for the distributions of (in decreasing strength of the fit) Al, Co, Li, Zn, Mn, Cu, Pb, and Cd, i.e., metals that are introduced into the atmospheric aerosol by pulses inducing temporal variability in their concentrations. The gamma model was associated with Fe, i.e., metals that exhibit less inter-annual variability than the former trace metals. The third mode (Weibull) represented the distribution of the concentrations of V and Ni. The statistical approach presented in this study contributed to better define and constrain the distribution of the 11 trace metals of the atmospheric aerosol from the northwestern Mediterranean coast. In a close future, knowledge of these statistical distributions will allow using convolution models to separate their natural and anthropogenic contributions, therefore increasing our ability to study anthropogenic emissions of trace metals and their impact on the environment.

Keywords

Trace metals Probability distribution analysis Lognormal Weibull Gamma Likelihood maximization 

Notes

Acknowledgments

This work was partly supported by the Conseil Général des Alpes-Maritimes and the Communauté Nice Côte d’Azur (project AIRMED 06). T. Robin contribution was partly supported by the Swiss National Fund. We thank the French Marine team of the Cap Ferrat naval signal station. We also thank Patrick Chang for language corrections. L. Guidi contribution was partly supported by the Center for Microbial Oceanography, Research and Education (C-MORE; NSF grant EF-0424599) and the Gordon and Betty Moore Foundation.

References

  1. Akaike, H. (1974). New look at statistical-model identification. IEEE T Automation Contraception, 19(6), 716–723.CrossRefGoogle Scholar
  2. Aleksandrapoulou, V., Eleftheriadis, K., Diapouli, E., Torseth, K., & Lazaridis, M. (2012). Assessing PM10 source reduction in urban agglomerations for air quality compliance. Journal of Environmental Monitoring, 14, 266–278.CrossRefGoogle Scholar
  3. Andral, B., Stanisiere, J. Y., Sauzade, D., Damier, E., Thebault, H., Galgani, F., et al. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 49, 704–712.CrossRefGoogle Scholar
  4. Anwari, M. A., Tuncel, G., & Ataman, O. Y. (1992). Lead and nickel levels in Black Sea aerosols by ETA-AS. Internal Journal Environmental Analytical Chemistry, 47, 227–237.CrossRefGoogle Scholar
  5. Barnaba, F., & Gobbi, G. P. (2004). Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmospheric Chemistry Physics, 4, 2367–2391.CrossRefGoogle Scholar
  6. Bencala, K. E., & Seinfeld, J. H. (1976). On frequency distributions of air pollutant concentrations. Atmospheric Environment, 10(11), 941–950.CrossRefGoogle Scholar
  7. Blackwood, L. G. (1991). The quality of mean and variance estimates for normal and lognormal data when the underlying distribution is misspecified. Journal of Chemometrics, 5(3), 263–271.CrossRefGoogle Scholar
  8. Blackwood, L. G. (1992). The lognormal distribution, environmental data, and radiological monitoring. Environmental Monitoring and Assessment, 21(3), 193–210.CrossRefGoogle Scholar
  9. Bollhöfer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochimica et Cosmochimica Acta, 65(11), 1727–1740.CrossRefGoogle Scholar
  10. Bonnet S, Guieu C (2006) Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: a 1-year survey. J Geophys Res—Oceans 111(C9):Artn C09010. doi:10.1029/2005jc003213
  11. Caggiano, R., Fiore, S., Lettino, A., Macchiato, M., Sabia, S., & Trippetta, S. (2011). PM2.5 measurements in a Mediterranean site: two typical cases. Atmospheric Research, 102, 157–166.CrossRefGoogle Scholar
  12. Chester, R., Nimmo, M., & Corcoran, P. A. (1997). Rain water aerosol trace metal relationships at Cap Ferrat: a coastal site in the western Mediterranean. Marine Chemistry, 58(3–4), 293–312.CrossRefGoogle Scholar
  13. Chester, R., Sharples, E. J., Sanders, G. S., & Saydam, A. C. (1984). Saharan dust incursion over the Tyrrhenian Sea. Atmospheric Environment, 18(5), 929–935.CrossRefGoogle Scholar
  14. Chiffoleau, J. F., Chauvaud, L., Amouroux, D., Barats, A., Dufour, A., Pecheyran, C., et al. (2004). Nickel and vanadium contamination of benthic invertebrates following the “Erika” wreck. Aquatic Living Resources, 17(3), 273–280.CrossRefGoogle Scholar
  15. Chrysikou, L. P., & Samara, C. A. (2009). Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air. Atmospheric Environment, 43(30), 4557–4569. doi:10.1016/j.atmosenv.2009.06.033.CrossRefGoogle Scholar
  16. Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique (CITEPA) (2009) Air emissions in France, Mainland France, Substances relative to the contamination by heavy metals. www.citepa.org/missions/nationale/ML/Emissions_FRmt_MLEN.pdf
  17. Duncan BN, Bey I (2004) A modeling study of the export pathways of pollution from Europe: seasonal and interannual variations (1987–1997). J Geophys Res—Atmos 109(D8):D08301. doi:10.1029/2003jd004079
  18. Fang, G. C., Huang, Y. L., & Huang, J. H. (2010). Study of atmospheric metallic elements pollution in Asia during 2000–2007. Journal of Hazardous Materials, 180(1–3), 115–121. doi:10.1016/j.jhazmat.2010.03.120.CrossRefGoogle Scholar
  19. Flament, P., Bertho, M. L., Deboudt, K., & Puskaric, E. (1996). Changes in the lead content of atmospheric aerosols above the Eastern Channel between 1982/83 and 1994. Science of the Total Environment, 192(2), 193–206.CrossRefGoogle Scholar
  20. Georgiadis, T., Fortezza, F., Alberti, L., Strocchi, V., Marani, A., & Dal Bo’, G. (1998). Probability density functions of photochemicals over a coastal area of Northern Italy. Nuovo Cimento C, 21(1), 75–84.Google Scholar
  21. Georgopoulos, P. G., & Seinfeld, J. H. (1982). Statistical distributions of air pollutant concentrations. Environmental Science & Technology, 16(7), A401–A416. doi:10.1021/es00101a002.CrossRefGoogle Scholar
  22. Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loye-Pilot, M. D., Measures, C., et al. (1999). The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progress Oceanografia, 44(1–3), 147–190.CrossRefGoogle Scholar
  23. Guieu, C., Chester, R., Nimmo, M., Martin, J. M., Guerzoni, S., Nicolas, E., et al. (1997). Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean. Deep-Sea Research II, 44(3–4), 655–674.CrossRefGoogle Scholar
  24. Heimbürger, L. E., Migon, C., Dufour, A., Chiffoleau, J. F., & Cossa, D. (2010). TM concentrations in the north-western Mediterranean atmospheric aerosol between 1986 and 2008: seasonal patterns and decadal trends. Science of the Total Environment, 408(13), 2629–2638. doi:10.1016/j.scitotenv.2010.02.042.CrossRefGoogle Scholar
  25. Hope, B. K. (1994). A global biogeochemical budget for vanadium. Science of the Total Environment, 141, 1–10. doi:10.1016/0048-9697(94)90012-4.CrossRefGoogle Scholar
  26. Kim, K. H., Kang, C. H., Lee, J. H., Choi, K. C., Youn, Y. H., & Hong, S. M. (2006). Investigation of airborne lead concentrations in relation to Asian dust events and air mass transport pathways. Journal Aerosol Science, 37(12), 1809–1825. doi:10.1016/j.jaerosci.2006.08.009.CrossRefGoogle Scholar
  27. Lévy, M., Memery, L., & Andre, J. M. (1998). Simulation of primary production and export fluxes in the northwestern Mediterranean Sea. Journal of Marine Research, 56(1), 197–238.CrossRefGoogle Scholar
  28. Lu, H. C. (2003). Comparisons of statistical characteristic of air pollutants in Taiwan by frequency distribution. Journal of the Air & Waste Management Association (1995), 53(5), 608–616.CrossRefGoogle Scholar
  29. Marticorena, B., & Bergametti, G. (1996). Two-year simulations of seasonal and interannual changes of the Saharan dust emissions. Geophysical Research Letters, 23(15), 1921–1924.CrossRefGoogle Scholar
  30. Migon, C., Alleman, L., Leblond, N., & Nicolas, E. (1993). Evolution of atmospheric lead over the northwestern Mediterranean between 1986 and 1992. Atmospheric Environment, 27(14), 2161–2167.Google Scholar
  31. Migon, C., & Caccia, J. L. (1990). Separation of anthropogenic and natural emissions of particulate heavy-metals in the western Mediterranean atmosphere. Atmospheric Environment, 24A(2), 399–405.Google Scholar
  32. Migon, C., Gentili, B., & Journel, B. (2000). Statistical analysis of the concentrations of twelve metals in the Ligurian atmospheric aerosol. Oceanologica Acta, 23(1), 37–45.CrossRefGoogle Scholar
  33. Migon, C., Robin, T., Dufour, A., & Gentili, B. (2008). Decrease of lead concentrations in the western Mediterranean atmosphere during the last 20 years. Atmospheric Environment, 42(4), 815–821. doi:10.1016/j.atmosenv.2007.10.078.CrossRefGoogle Scholar
  34. Mijic, Z., Stojic, A., Perišic, M., Rajšic, S., & Tasic, M. (2012). Statistical character and transport pathways of atmospheric aerosols in Belgrade. In: G. Lopez Badilla, B. Valdez, & M. Schorr (Eds.), Air quality–new perspectives. InTech Open Science, 11 (pp. 199–226). doi:10.5772/45873.
  35. Morel, B., Yeh, S., & Cifuentes, L. (1999). Statistical distributions for air pollution applied to the study of the particulate problem in Santiago. Atmospheric Environment, 33(16), 2575–2585.CrossRefGoogle Scholar
  36. Moulin, C., Lambert, C. E., Dulac, F., & Dayan, U. (1997). Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature, 387, 691–694.CrossRefGoogle Scholar
  37. Ott, W. R. (1990). A physical explanation of the lognormality of pollutant concentrations. J Air Waste Management, 40(10), 1378–1383.CrossRefGoogle Scholar
  38. Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment, 43(1), 117–127. doi:10.1016/j.atmosenv.2008.09.066.CrossRefGoogle Scholar
  39. Pirrone, N., Costa, P., & Pacyna, J. M. (1999). Past, current and projected atmospheric emissions of trace elements in the Mediterranean region. Water Science Technology, 39, 1–7.Google Scholar
  40. Ridame, C., Guieu, C., & Loÿe-Pilot, M. D. (1999). Trend in total atmospheric deposition fluxes of aluminium, iron, and trace metals in the northwestern Mediterranean over the past decade (1985–1997). Journal of Geophysical Research, 104(D23), 30127–30138.CrossRefGoogle Scholar
  41. Rumburg, B., Alldredge, R., & Claiborn, C. (2001). Statistical distributions of particulate matter and the error associated with sampling frequency. Atmospheric Environment, 35(16), 2907–2920.CrossRefGoogle Scholar
  42. Salma, I., Maenhaut, W., & Zaray, G. (2002). Comparative study of elemental mass size distributions in urban atmospheric aerosol. Journal Aerosol Science, 33(2), 339–356.CrossRefGoogle Scholar
  43. Sandroni, V., & Migon, C. (1997). Significance of trace metal medium-range transport in the western Mediterranean. Science of the Total Environment, 196(1), 83–89.CrossRefGoogle Scholar
  44. Schwarz, G. (1978). Estimating dimension of a model. The Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  45. Taylor, J. A., Jakeman, A. J., & Simpson, R. W. (1986). Modeling distributions of air pollutant concentrations: I. Identification of statistical models. Atmospheric Environment, 20(9), 1781–1789.CrossRefGoogle Scholar
  46. Venkataraman, C., Thomas, S., & Kulkarni, P. (1999). Size distributions of polycyclic aromatic hydrocarbons—gas/particle partitioning to urban aerosols. Journal of Aerosol Science, 30(6), 759–770.CrossRefGoogle Scholar
  47. Wiesner, M. R., Characklis, G. W., & Brejchova, D. (1998) Metals and colloids in urban runoff. In: H. E Allen, A.W. Garrison, & G.W. Luther III (Eds.), Metals in the environment (pp. 23–35). Ann Arbor, MI: Ann Arbor Press.Google Scholar
  48. Xie, R. K., Seip, H. M., Leinum, J. R., Winje, T., & Xiao, J. S. (2005). Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Science of the Total Environment, 343, 261–272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Robin
    • 1
  • Lionel Guidi
    • 2
  • Aurélie Dufour
    • 3
    • 4
  • Christophe Migon
    • 3
    • 4
  1. 1.Transport and Mobility LaboratoryTRANSP-OR Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of OceanographyUniversity of HawaiiHonoluluUSA
  3. 3.Université Pierre et Marie Curie (UPMC), UMR 7093, Observatoire Océanologique de Villefranche-sur-merVillefranche-sur-MerFrance
  4. 4.CNRS/INSU, UMR 7093, Laboratoire d’Océanographie de VillefrancheVillefranche-sur-MerFrance

Personalised recommendations