Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6989–6999 | Cite as

Dissolved methane in Indian freshwater reservoirs

  • G. Narvenkar
  • S. W. A. Naqvi
  • S. Kurian
  • D. M. Shenoy
  • A. K. Pratihary
  • H. Naik
  • S. Patil
  • A. Sarkar
  • M. Gauns
Article

Abstract

Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian reservoirs have the potential to emit as much as 33.5 MT of CH4 per annum to the atmosphere. However, this estimate is based on assumptions rather than actual measurements. We present here the first data on dissolved CH4 concentrations from eight freshwater reservoirs in India, most of which experience seasonal anaerobic conditions and CH4 buildup in the hypolimnia. However, strong stratification prevents the CH4-rich subsurface layers to ventilate CH4 directly to the atmosphere, and surface water CH4 concentrations in these reservoirs are generally quite low (0.0028–0.305 μM). Moreover, only in two small reservoirs substantial CH4 accumulation occurred at depths shallower than the level where water is used for power generation and irrigation, and in the only case where measurements were made in the outflowing water, CH4 concentrations were quite low. In conjunction with short periods of CH4 accumulation and generally lower concentrations than previously assumed, our study implies that CH4 emission from Indian reservoirs has been greatly overestimated.

Keywords

Methane Eutrophication Stratification Dams Reservoirs India 

References

  1. Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., et al. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-years old tropical reservoir (Petit-Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007. doi:10.1029/2005GB002457.CrossRefGoogle Scholar
  2. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. Science, 331, 50.CrossRefGoogle Scholar
  3. Bhattacharyya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science, 79, 655–660.Google Scholar
  4. Biswas, H., Mukhopadhyay, S. K., Sen, S., & Jana, T. K. (2007). Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India. Journal of Marine Systems, 68, 55–64.CrossRefGoogle Scholar
  5. Borges, A. V., Abril, G., Delille, B., Descy, J.-P., & Darchambeau, F. (2011). Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). Journal of Geophysical Research, 116, G03032. doi:10.1029/2011JG001673.CrossRefGoogle Scholar
  6. Chen, Y.-H., & Prinn, R. G. (2006). Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. Journal of Geophysical Research, 111, D10307. doi:10.1029/2005JD006058.CrossRefGoogle Scholar
  7. Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14, 454–458.CrossRefGoogle Scholar
  8. Eller, G., Känel, L., & Krüger, M. (2005). Co-occurrence of aerobic and anaerobic methane oxidation in the water column of lake plußsee. Applied and Environmental Microbiology, 71(12), 8925–8928.CrossRefGoogle Scholar
  9. Fearnside, P. M. (2002). Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucurui´ Dam) and the energy policy implications. Water, Air, and Soil Pollution, 133, 69–96.CrossRefGoogle Scholar
  10. Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J. F., Labroue, L., Richard, S., et al. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Global Biogeochemical Cycles, 11(4), 471–483.CrossRefGoogle Scholar
  11. Galy-Lacaux, C., Delmas, R., Kouadio, G., Richard, S., & Gosse, P. (1999). Long term greenhouse gas emission from a hydroelectric reservoir in tropical forest regions. Global Biogeochemical Cycles, 13(2), 503–517.CrossRefGoogle Scholar
  12. Giles, J. (2006). Methane quashes green credentials of hydropower. Nature, 444, 254–255.CrossRefGoogle Scholar
  13. Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., & Tang, K. W. (2011). Microbial methane production in oxygenated water column of an oligotrophic lake. Proceedings of the National Academy of Sciences, 108(49), 19657–19661.CrossRefGoogle Scholar
  14. Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., et al. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters, 33, L21407. doi:10.1029/2006GL027929.CrossRefGoogle Scholar
  15. Guérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research, 112, G03006. doi:10.1029/2006JG000393.CrossRefGoogle Scholar
  16. International Panel on Climate Change (IPCC), (2006). In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe (Eds.), IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Hayama, Japan.Google Scholar
  17. Keller, M., & Stallard, R. F. (1994). Methane emission by bubbling from Gatun Lake, Panama. Journal of Geophysical Research, 99(D4), 8307–8319.CrossRefGoogle Scholar
  18. Kemenes, A., Forsberg, B. R., & Melack, J. M. (2007). Methane release below a tropical hydroelectric dam. Geophysical Research Letters, 34, L12809. doi:10.1029/2007GL029479.CrossRefGoogle Scholar
  19. Kurian, S., Roy, R., Repeta, D. J., Gauns, M., Shenoy, D. M., Suresh, T., et al. (2012). Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India. Biogeosciences, 9, 2485–2495.CrossRefGoogle Scholar
  20. Li, C., Qiu, J., Frolking, S., Xiao, X., Salas, W., Moore, B., III, et al. (2002). Reduced methane emissions from large scale changes in water management of China’s rice paddies during 1980–2000. Geophysical Research Letters, 29, 33-1–33-4. doi:10.1029/2002GL015370.CrossRefGoogle Scholar
  21. Lima, I. B. T. (2005). Biogeochemical distinction of methane releases from two Amazon hydroreservoirs. Chemosphere, 59, 1697–1702.CrossRefGoogle Scholar
  22. Liu, R., Hofmann, A., Gülaçar, F. O., Favarger, P.-Y., & Dominik, J. (1996). Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chemical Geology, 133, 201–209.CrossRefGoogle Scholar
  23. Madhan, R., Dabholkar, N., Navelkar, G., Desa, E., Afzulpurkar, S., Mascarenhas, A., et al. (2012). Autonomous profiling device to monitor remote water bodies. Current Science, 102, 169–176.Google Scholar
  24. Mc Auliffe, C. (1971). GC determination of solutes by multiple phase equilibration. Chemical Technology, 1, 46–50.Google Scholar
  25. Panganiban, A. T., Jr., Patt, T. E., Hart, W., & Hanson, R. S. (1979). Oxidation of methane in the absence of oxygen in Lake water samples. Applied and Environmental Microbiology, 37, 303–309.Google Scholar
  26. Purvaja, R., & Ramesh, R. (2001). Natural and anthropogenic CH4 emission from Coastal wetlands of south India. Environmental Management, 27, 547–557.CrossRefGoogle Scholar
  27. Rajkumar, A. N., Barnes, J., Ramesh, R., Purvaja, R., & Upstill-Goddard, R. C. (2008). Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 56, 2043–2051.CrossRefGoogle Scholar
  28. Ramos, F. M., Lima, I. B. T., Rosa, R. R., Mazzi, E. A., Carvalho, J. C., Rasera, M. F. F. L., et al. (2006). Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophysical Research Letters, 33, L21404. doi:10.1029/2006GL027943.CrossRefGoogle Scholar
  29. Rosa, L. P., Santos, M. A., Matvienko, B., Sikar, E., & Santos, E. O. (2006). Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from Hydroelectric Dams and response to his political claiming. Climatic Change, 75, 91–102. doi:10.1007/s10584-005-9046-6.CrossRefGoogle Scholar
  30. Saint Louis, V., Kelly, C., Duchemin, E., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir surface as sources of greenhouse gases to the atmosphere: A global estimate. BioScience, 20, 766–775.CrossRefGoogle Scholar
  31. Schulz, M., Faber, E., Hollerbach, A., Schröder, H. G., & Güde, H. (2001). The methane cycle in the epilimnion of Lake Constance. Archiv fuer Hydrobiologie, 151, 157–176.Google Scholar
  32. Shalini, A., Ramesh, R., Purvaja, R., & Barnes, J. (2006). Spatial and temporal distribution of methane in an extensive shallow estuary, south India. Journal of Earth System Science, 115, 451–460.CrossRefGoogle Scholar
  33. Striegl, R. G., & Michmerhuizen, C. M. (1998). Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography, 43, 1519–1529.CrossRefGoogle Scholar
  34. Verma, A., Subramanian, V., & Ramesh, R. (2002). Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India. Chemosphere, 47, 883–889.CrossRefGoogle Scholar
  35. Wetzel, R. G. (2001). Limnology: Lake and river systems (3rd ed.). Orlando: Academic press.Google Scholar
  36. Xie, L., Chen, J., Wang, R., & Zhou, Q. (2012). Effect of carbon source and COD/NO3 -N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment. Journal of Bioscience and Bioengineering, 113(6), 759–764.Google Scholar
  37. Yan, X., Ohara, T., & Akimoto, H. (2003). Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast, and South Asian countries. Global Change Biology, 9, 237–254.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Narvenkar
    • 1
  • S. W. A. Naqvi
    • 1
  • S. Kurian
    • 1
  • D. M. Shenoy
    • 1
  • A. K. Pratihary
    • 1
  • H. Naik
    • 1
  • S. Patil
    • 1
  • A. Sarkar
    • 1
  • M. Gauns
    • 1
  1. 1.National Institute of Oceanography (Council of Scientific & Industrial Research)Dona PaulaIndia

Personalised recommendations