Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6809–6818 | Cite as

Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage

  • Ganiyu Oladunjoye OyetiboEmail author
  • Matthew Olusoji Ilori
  • Oluwafemi Sunday Obayori
  • Olukayode Oladipo Amund
Article

Abstract

Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30–35 °C, pH 2.0 and 350–450 mg/L. The bacterial strains effectively removed 79.0–90.5 % Cr (VI) ions from solution. Furthermore, 85.3–93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4–91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni > Burkholderia cepacia AL96Co > Corynebacterium kutscheri FL108Hg > Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.

Keywords

Biosorption Industrial wastewater Heavy metal Chromium (VI) Resistant bacteria 

References

  1. Ahmad, A., Ghufran, R., & Faizal, W. M. (2010). Cd(II), Pb(II) and Zn(II) removal from contaminated water by biosorption using activated sludge biomass. Clean, 38(2), 153–158.Google Scholar
  2. Alam, M. Z., & Ahmad, S. (2011). Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil. Clean, 39(3), 226–237.Google Scholar
  3. Anjana, K., Kaushik, A., Kiran, B., & Nisha, R. (2007). Biosorption of Cr(VI) by immobililised biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. Journal of Hazardous Materials, 148, 383–386.CrossRefGoogle Scholar
  4. Atifet, B., Handan, U., Yalcin, K. B., Ahmet, K., & Avni, C. (2004). Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresource Technology, 94, 245–249.CrossRefGoogle Scholar
  5. ATSDR (2008). Public health statement: toxic substances and health. Agency for toxic substances and disease registry, Atlanta: Division of toxicology and environmental medicine. September bulletin.Google Scholar
  6. Azad, N., Anand Krishnan, V. I., Manosroi, A., Wang, L., & Rojanasakul, Y. (2008). Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis. Carcinogenesis, 29, 1538–1545.CrossRefGoogle Scholar
  7. Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biology, 80, 723–736.CrossRefGoogle Scholar
  8. Beolchini, F., Pagnanelli, F., Toro, L., & Veglio, F. (2003). Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy, 70, 101–112.CrossRefGoogle Scholar
  9. Chergui, A., Bakhti, M. Z., Chahboub, A., Haddoum, A., Selatnia, A., & Junter, G. A. (2007). Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass. Desalination, 206, 179–184.CrossRefGoogle Scholar
  10. Cristani, M., Naccari, C., Nostro, A., Pizzimenti, A., Trombetta, D., & Pizzimenti, F. (2012). Possible use of Serratia marcescens in toxic metal biosorption (removal). Environmental Science and Pollution Research, 19, 161–168.CrossRefGoogle Scholar
  11. Fathima, A., Rao, J. R., & Nair, B. U. (2011). Trivalent chromium removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus sp isolated from chromium polluted soil. Journal of Chemical Technology and Biotechnology. doi: 10.1002/jctb.2710.
  12. Fourest, E., & Roux, C. J. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37(3), 399–403.CrossRefGoogle Scholar
  13. Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13–28.CrossRefGoogle Scholar
  14. Goyal, N., Jain, S. C., & Banerjee, U. C. (2003). Comparative studies on the adsorption of heavy metals. Advances in Environmental Research, 7, 311–319.CrossRefGoogle Scholar
  15. Hemambika, B., & Kannan, V. R. (2012). Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities. Applied Biochemistry and Biotechnology, 167, 1653–1667.CrossRefGoogle Scholar
  16. Hussein, H., Ibrahim, S. F., Kandeel, K., & Moawad, H. (2004). Biosorption of heavy metals from waste water using Pseudomonas sp. Electronic Journal Biotechnology, 7(1), 38–46.Google Scholar
  17. Kang, S.-Y., Lee, J.-U., & Kim, K.-W. (2007). Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochemical Engineering Journal, 36, 54–58.CrossRefGoogle Scholar
  18. Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.CrossRefGoogle Scholar
  19. Loukidou, M. X., Karapantsios, T. D., Zouboulis, A. I., & Matis, K. A. (2004). Diffusion kinetic study of cadmium (II) biosorption by Aeromonas caviae. Journal of Chemical Technology and Biotechnology, 79, 711–719.CrossRefGoogle Scholar
  20. Miretzky, P., Saralegui, A., & Cirelli, A. F. (2006). Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere, 62, 247–254.CrossRefGoogle Scholar
  21. Munoz, R., Alvarez, M. T., Munoz, A., Terrazas, E., Guieysse, B., & Mattiasson, B. (2006). Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere, 63, 903–911.CrossRefGoogle Scholar
  22. Naik, U. C., Srivastava, S., & Thakur, I. S. (2012). Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environmental Science and Pollution Research, 19, 3005–3014.CrossRefGoogle Scholar
  23. Norton, L., Baskaran, K., & McKenzie, T. (2004). Biosorption of zinc from aqueous solutions using biosolids. Advances in Environmental Research, 8, 629–635.CrossRefGoogle Scholar
  24. Oyetibo, G. O., Ilori, M. O., Adebusoye, S. A., Obayori, O. S., & Amund, O. O. (2010). Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigeria contaminated systems. Environmental Monitoring and Assessment, 168, 305–314.CrossRefGoogle Scholar
  25. Pagnanelli, F., Mainelli, S., Bornoroni, L., Dionisi, D., & Toro, L. (2009). Mechanisms of heavy-metal removal by activated sludge. Chemosphere, 75, 1028–1034.CrossRefGoogle Scholar
  26. Puranik, P. R., & Paknikar, K. M. (1999). Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterisation studies. Biotechnology Progress, 15(2), 228–237.CrossRefGoogle Scholar
  27. Rodriguez-Llorente, I. D., Gamane, D., Lafuente, A., Dary, M., El Hamdaoui, A., Delgadillo, J., et al. (2010). Cadmium biosorption properties of the metal-resistant Ochrobactrum cytisi Azn6.2. Engineering in Life Science, 10, 49–56.CrossRefGoogle Scholar
  28. Sahin, Y., & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, 1895–1901.CrossRefGoogle Scholar
  29. Said, W. A., & Lewis, D. L. (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Applied and Environmental Microbiology, 57, 1498–1503.Google Scholar
  30. Sandrin, T. R., Chech, A. M., & Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Applied and Environmental Microbiology, 66, 4585–4588.CrossRefGoogle Scholar
  31. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S (2005). Chromium toxicity in plants. Environment International, 31, 739–753.Google Scholar
  32. Shuttleworth, K. L., & Unz, R. F. (1993). Sorption of heavy metals to the filamentous bacterium Thiothrix strain A1. Applied and Environmental Microbiology, 59, 1274–1282.Google Scholar
  33. Sprocati, A. R., Alisi, C., Segre, L., Tasso, F., Galletti, M., & Cremesini, C. (2006). Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. The Science of the Total Environment, 366, 649–658.CrossRefGoogle Scholar
  34. Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) Biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.CrossRefGoogle Scholar
  35. Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. For removal of hexavalent chromium from tannery effluent. Biodegradation, 18, 637–646.CrossRefGoogle Scholar
  36. Srivastava, S., & Thakur, I. S. (2012). Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent. Environmental Technology, 33, 113–122.CrossRefGoogle Scholar
  37. Tsui, M. T. K., Cheung, K. C., Tam, N. F. Y., & Wong, M. H. (2006). A comparative study on metal sorption by brown seaweed. Chemosphere, 51, 51–57.CrossRefGoogle Scholar
  38. Vijayaraghavan, K., & Yun, Y. S. (2007). Utilisation of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 141, 45–52.CrossRefGoogle Scholar
  39. Vijayaraghavan, K., & Yun, Y. S. (2008). Bacteria biosorbents and biosorption. Biotechnology Advances, 26, 266–291.CrossRefGoogle Scholar
  40. Vijayaraghavan, K., Jegan, J., Palanivelu, K., & Velan, M. (2005). Removal and recovery of copper from aqueous solution by eggshell in a packed column. Mining Engineering, 18, 545–547.CrossRefGoogle Scholar
  41. Voleski, B. (2007). Biosorption and me. Water Research, 41, 4017–4029.CrossRefGoogle Scholar
  42. Wakeman, T. P., Wyczechowska, D., & Xu, B. (2005). Involvement of the p38 MAP kinase in Cr(VI)-induced growth arrest and apoptosis. Molecular and Cellular Biochemistry, 279, 69–73.CrossRefGoogle Scholar
  43. Zhou, M., Liu, Y., Zeng, G., Li, X., Xu, W., & Fan, T. (2007). Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World Journal of Microbiology and Biotechnology, 23, 43–48.CrossRefGoogle Scholar
  44. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Zannetaki, E. L., & Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98, 2859–2865.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ganiyu Oladunjoye Oyetibo
    • 1
    Email author
  • Matthew Olusoji Ilori
    • 1
  • Oluwafemi Sunday Obayori
    • 1
    • 2
  • Olukayode Oladipo Amund
    • 1
  1. 1.Department of MicrobiologyUniversity of LagosYabaNigeria
  2. 2.Department of MicrobiologyLagos State UniversityOjoNigeria

Personalised recommendations