Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6783–6792 | Cite as

Heavy metal content in oysters (Crassostrea gigas) cultured in the Ebro Delta in Catalonia, Spain

  • Victoria OchoaEmail author
  • Carlos Barata
  • M. Carmen Riva


The aim of this study was to determine heavy metal content (As, Cd, Cu, Hg, Cd, Pb, and Zn) in oysters transplanted in Ebro Delta bays (Alfacs and Fangar) where oysters are traditionally cultured for human consumption. Metal body burdens were monitored weekly during the period of maximal agriculture activity from May to June in 2008 and 2009. Results indicate that regardless of the high levels of metals reported in biota living in Ebro River, metal levels in oysters from both bays were similar to those found in unpolluted areas and far below the maximum limits of tolerance recommended by the European Commission. Nevertheless, metal accumulation patterns in oysters differentiate two sources of pollution: one coming from agriculture activities within the Ebro’s delta for As, Cd, Cu, and Zn and other coming from Ebro River probably related to industrial activities upstream (Hg, Pb) or to lead shot pellets form hunting activities (Pb). Reported results, thus, are in concern with previous studies and indicate that metallic pollutants do not affect oysters cultures in Ebro Delta associated bays.


Metal Oyster Ebro Human health Agriculture Pollution 



The authors would like to thank the Research Grant of the Projects MEC-MICINN CTM2007-62436 and CTM2010-18167.


  1. Amiard, J. C., Amiard-Triquet, C., & Metayer, C. (1985). Experimental study of bioaccumulation, toxicity and regulation of some trace metals in various estuarine and coastal organisms. In J. Salanki (Ed.), Heavy metals in water organisms (pp. 313–324). Budapest: Symposia Biologica Hungaria, Akademiai Kiado.Google Scholar
  2. Amiard, J. C., Amiard-Triquet, C., Berthet, B., & Métayer, C. (1986). Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel; Mytilus edulis. Marine Biology, 90(3), 425–431.CrossRefGoogle Scholar
  3. Barata, C., Lekumberri, I., Vila-Escalé, M., Prat, N., & Porte, C. (2005). Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat River basin (NE Spain). Aquaict Toxicology, 74, 3–19.CrossRefGoogle Scholar
  4. Bosch, C., Olivares, A., Faria, M., Navas, J. M., del Olmo, I., Grimalt, J. O., et al. (2009). Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. Aquatic toxicology, 94(1), 16–27.CrossRefGoogle Scholar
  5. Burger, J., & Gochfeld, M. (2006). Mercury in fish available in supermarkets in Illinois: are there regional differences. Science of the Total Environment, 367(2–3), 1010–1016.CrossRefGoogle Scholar
  6. Burger, J., & Gochfeld, M. (2011). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Science of the Total Environment, 409(8), 1418–1429.CrossRefGoogle Scholar
  7. Carrasco, L., Barata, C., García-Berthou, E., Tobias, A., Bayona, J. M., & Díez, S. (2011). Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). Chemosphere, 84(11), 1642–1649.CrossRefGoogle Scholar
  8. Chaharlang, B. H., Bakhtiari, A. R., & Yavari, V. (2012). Assessment of cadmium, copper, lead and zinc contamination using oysters (Saccostrea cucullata) as biomonitors on the coast of the Persian Gulf, Iran. Bulletin of Environmental Contamination and Toxicology, 88(6), 956–961.CrossRefGoogle Scholar
  9. Damásio, J., Navarro-Ortega, A., Tauler, R., Lacorte, S., Barceló, D., Soares, A. M. V. M., et al. (2010). Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology, 19(6), 1084–1094.CrossRefGoogle Scholar
  10. Edmonds, J. S., & Francesconi, K. A. (1977). Methylated arsenic from marine fauna. Nature, 265(5593), 436.CrossRefGoogle Scholar
  11. Edmonds, J. S., & Francesconi, K. A. (1993). Arsenic in seafoods: human health aspects and regulations. Marine Pollution Bulletin, 26(12), 665–674.CrossRefGoogle Scholar
  12. Eisler, R. (1987). Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. Biological Report 85 (1.10). Washington: US Fish and Wildlife ServiceGoogle Scholar
  13. Eisler, R. (2000). Handbook of chemical risk assessment: health hazards to humans, plants, and animals (Vol. 1). Boca Raton: Lewis.CrossRefGoogle Scholar
  14. European Commission (2006). Regulation EC no.1881/2006. Official Journal of the European Communities. Setting maximum levels of certain contaminants in foodstuffs. L77/71-L77-13.Google Scholar
  15. Funes, V., Alhama, J., Navas, J. I., López-Barea, J., & Peinado, J. (2006). Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environmental Pollution, 139(2), 214–223.CrossRefGoogle Scholar
  16. García-Rico, L., Ramos Ruiz, R. E., & Jiménez, J. V. (2001). Determination of total metals in cultivated oysters (Crassostrea gigas) from the northwest coast of Mexico by microwave digestion and atomic absorption spectrometry. Journal of AOAC International, 84(6), 1909–1913.Google Scholar
  17. Greig, R. A., Nelson, B. A., & Nelson, D. A. (1975). Trace metal content in the American oyster. Marine Pollution Bulletin, 6(5), 72–73.CrossRefGoogle Scholar
  18. Han, B.-C., & Hung, T.-C. (1990). Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution, 65(4), 347–362.CrossRefGoogle Scholar
  19. Hardiman, S., & Pearson, B. (1995). Heavy metals, TBT and DDT in the Sydney rock oyster (Saccostrea commercialis) sampled from the Hawkesbury River estuary, NSW, Australia. Marine Pollution Bulletin, 30(8), 563–567.CrossRefGoogle Scholar
  20. Köck, M., Farré, M., Martínez, E., Gajda-Schrantz, K., Ginebreda, A., Navarro, A., et al. (2010). Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro River delta (Spain). Journal of Hydrology, 383(1–2), 73–82.CrossRefGoogle Scholar
  21. Lauenstein, G. G., Robertson, A., & O’Connor, T. P. (1990). Comparison of trace metal data in mussels and oysters from a mussel watch programme of the 1970s with those from a 1980s programme. Marine Pollution Bulletin, 21(9), 440–447.CrossRefGoogle Scholar
  22. Lavado, R., Ureña, R., Martin-Skilton, R., Torreblanca, A., del Ramo, J., Raldúa, D., et al. (2006). The combined use of chemical and biochemical markers to assess water quality along the Ebro River. Environmental Pollution, 139, 330–339.CrossRefGoogle Scholar
  23. Llebot, C., Solé, J., Delgado, M., Fernández-Tejedor, M., Camp, J., & Estrada, M. (2011). Hydrographical forcing and phytoplankton variability in two semi-enclosed estuarine bays. Journal of Marine Systems, 86(3–4), 69–86.CrossRefGoogle Scholar
  24. Mañosa, S., Mateo, R., & Guitart, R. (2001). A review of the effects of agricultural and industrial contamination on the Ebro Delta biota and wildlife. Environmental Monitoring and Assessment, 71(2), 187–205.CrossRefGoogle Scholar
  25. Mateo, R., Martínez-Vilalta, A., & Guitart, R. (1997). Lead shot pellets in the Ebro delta, Spain: densities in sediments and prevalence of exposure in waterfowl. Environmental Pollution, 96(3), 335–341.CrossRefGoogle Scholar
  26. Morera, M., Sanpera, C., Crespo, S., Jover, L., & Ruiz, X. (1997). Inter- and intraclutch variability in heavy metals and selenium levels in Audouin’s Gull eggs from the Ebro Delta, Spain. Archives of Environmental Contamination and Toxicology, 33(1), 71–75.CrossRefGoogle Scholar
  27. Nadal, M., Ferré-Huguet, N., Martí-Cid, R., Schuhmacher, M., & Domingo, J. L. (2008). Exposure to metals through the consumption of fish and seafood by the population living near the Ebro River in Catalonia, Spain: health risks. Human and Ecological Risk Assessment: An International Journal, 14(4), 780–795.CrossRefGoogle Scholar
  28. Najiah, M., Nadirah, M., Lee, K. L., Lee, S. W., Wendy, W., Ruhil, H. H., et al. (2008). Bacteria flora and heavy metals in cultivated oysters Crassostrea iredalei of Setiu Wetland, East Coast Peninsular Malaysia. Veterinary Research Communications, 32(5), 377–381.CrossRefGoogle Scholar
  29. Navarro, A., Quirós, L., Casado, M., Faria, M., Carrasco, L., Benejam, L., et al. (2009). Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. Aquatic toxicology, 93(2–3), 150–157.CrossRefGoogle Scholar
  30. Páez-Osuna, F., & Marmolejo-Rivas, C. (1990). Occurrence and seasonal variation of heavy metals in the oyster Saccrostrea iridescens. Bulletin of Environmental Contamination and Toxicology, 44(1), 129–134.CrossRefGoogle Scholar
  31. Páez-Osuna, F., Frías-Espericueta, M. G., & Osuna-López, J. I. (1995). Trace metal concentrations in relation to season and gonadal maturation in the oyster Crassostrea iridescens. Marine Environmental Research, 40(1), 19–31.CrossRefGoogle Scholar
  32. Páez-Osuna, F., Osuna-López, J. I., Izaguirre-Fierro, G., & Zazueta-Padilla, H. M. (1993). Heavy metals in oysters from a subtropical coastal lagoon associated with an agricultural drainage basin. Bulletin of Environmental Contamination and Toxicology, 50(5), 696–702.CrossRefGoogle Scholar
  33. Páez-Osuna, F., Ruiz-Fernández, A. C., Botello, A. V., Ponce-Vález, G., Osuna-López, J. I., Frías-Espericueta, M. G., et al. (2002). Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Marine Pollution Bulletin, 44(11), 1303–1308.CrossRefGoogle Scholar
  34. Pan, K., & Wang, W.-X. (2009). Biodynamics to explain the difference of copper body concentrations in five marine bivalve species. Environmental Science and Technology, 43(6), 2137–2143.CrossRefGoogle Scholar
  35. Pan, K., & Wang, W.-X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421–422, 3–16.CrossRefGoogle Scholar
  36. Phillips, D. J. H. (1990). Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquatic Toxicology, 16(3), 151–186.CrossRefGoogle Scholar
  37. Phillips, D. J. H., & Muttarasin, K. (1985). Trace metals in bivalve molluscs from Thailand. Marine Environmental Research, 15(3), 215–234.CrossRefGoogle Scholar
  38. Presley, B. J., Taylor, R. J., & Boothe, P. N. (1990). Trace metals in gulf on Mexico oysters. Science of the Total Environment, 97–98, 551–593.CrossRefGoogle Scholar
  39. Ramón, M., Cano, J., Peña, B. J., & Campos, M. J. (2005). Current status and perspectives of mollusc (bivalves and gastropods) culture in the Spanish Mediterranean. Boletín Instituto Español de Oceanografía, 21(1–4), 361–373.Google Scholar
  40. Riedel, G. F., & Valette-Silver, N. (2002). Differences in the bioaccumulation of arsenic by oysters from Southeast coastal US and Chesapeake Bay: environmental versus genetic control. Chemosphere, 49(1), 27–37.CrossRefGoogle Scholar
  41. Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70(6), 1085–1096.CrossRefGoogle Scholar
  42. Sánchez-Chardi, A., Lóez-Fuster, M. J., & Nadal, J. (2007). Bioaccumulation of lead, mercury, and cadmium in the greater white-toothed shrew, Crocidura russula, from the Ebro Delta (NE Spain): sex- and age-dependent variation. Environmental Pollution, 145(1), 7–14.CrossRefGoogle Scholar
  43. Schuhmacher, M., & Domingo, J. L. (1996). Concentrations of selected elements in oysters (Crassostrea angulata); from the Spanish Coast. Bulletin of Environmental Contamination and Toxicology, 56(1), 106–113.CrossRefGoogle Scholar
  44. Schuhmacher, M., Batiste, J., Bosque, M. A., Domingo, J. L., & Corbella, J. (1994). Mercury concentrations in marine species from the coastal area of Tarragona Province, Spain. Dietary intake of mercury through fish and seafood consumption. Science of the Total Environment, 156(3), 269–273.CrossRefGoogle Scholar
  45. Schuhmacher, M., Domingo, J. L., Llobet, J. M., & Corbella, J. (1995). Variations of heavy metals in water, sediments, and biota from the delta of Ebro River, Spain. Journal of Environmental Science and Health-Part A Environmental Science and Engineering and Toxic and Hazardous Substance Control, 30(6), 1361–1372.Google Scholar
  46. Shulkin, V. M., Presley, B. J., & Kavun, V. I. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29(4), 493–502.CrossRefGoogle Scholar
  47. Solá, C., & Prat, N. (2006). Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera, Hydropsychidae) to evaluate metal pollution in a mining river. Whole body versus tissue content. Science of the Total Environment, 359(1–3), 221–231.CrossRefGoogle Scholar
  48. Suarez-Serrano, A., Alcaraz, C., Ibanez, C., Trobajo, R., & Barata, C. (2010). Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicology and Environmental Safety, 73(3), 280–286.CrossRefGoogle Scholar
  49. Sun, P., Huang, C. J., Qiao, Y. M., Xie, L. M., and Dong, Q. X. (2004). An investigation on heavy metal contamination of marine animals in Shantou harbor. Journal of Tropical Oceanography, 56–62Google Scholar
  50. Terrado, M., Kuster, M., Raldúa, D., Lopez De Alda, M., Barceló, D., & Tauler, R. (2007). Use of chemometric and geostatistical methods to evaluate pesticide pollution in the irrigation and drainage channels of the Ebro River delta during the rice-growing season. Analytical and Bioanalytical Chemistry, 387(4), 1479–1488.CrossRefGoogle Scholar
  51. US-FDA (1993). Guidance document for arsenic in shellfish. Food and Drug Administration, US Department of Health and Human Services, Washington, DC.Google Scholar
  52. Vazquez, F., Aguilera, G., Delgado, D., & Marquez, A. (1990). Trace and heavy metals in the oyster; Crassostrea virginica, San Andres Lagoon, Tamaulipas, Mexico. Bulletin of Environmental Contamination and Toxicology, 45(6), 907–914.CrossRefGoogle Scholar
  53. Vázquez, G. F., Sanchez, G. M., & Virender, K. S. (1993). Trace metals in the oyster Crasostrea virginica of the Terminos Lagoon, Campeche, Mexico. Marine Pollution Bulletin, 26(7), 398–399.CrossRefGoogle Scholar
  54. Volety, A. (2008). Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology, 17(7), 579–590.CrossRefGoogle Scholar
  55. Watling, H. R., & Watling, R. J. (1976). Trace metals in oysters from Knysna estuary. Marine Pollution Bulletin, 7(3), 45–48.CrossRefGoogle Scholar
  56. Wright, D. A., Mihursky, J. A., & Phelps, H. L. (1985). Trace metals in Chesapeake Bay oysters: intra-sample variability and its implications for biomonitoring. Marine Environmental Research, 16(3), 181–197.CrossRefGoogle Scholar
  57. Zar, J. H. (1996). Bioestatistical analysis (3rd ed.). New Jersey: Prentice-Hall International, Inc.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Victoria Ochoa
    • 1
    Email author
  • Carlos Barata
    • 2
  • M. Carmen Riva
    • 1
  1. 1.Center for Research and Innovation in ToxicologyTechnical University of CataloniaTerrassaSpain
  2. 2.Department of Environmental ChemistryIDAEA-CSICBarcelonaSpain

Personalised recommendations