Environmental Monitoring and Assessment

, Volume 185, Issue 8, pp 6517–6529 | Cite as

Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.)

  • Satyavan Singh
  • Arti Bhatia
  • Ritu Tomer
  • Vinod Kumar
  • B. Singh
  • S. D. Singh


Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25–35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.


Ozone Carbon dioxide Mustard Oil Protein Macro- and micronutrients 



The financial assistance provided by Indian Agricultural Research Institute, New Delhi-110 012, India in the form of fellowship during the Ph.D. research is gratefully acknowledged.


  1. Agrawal, M., Singh, V., Agrawal, S. B., Bell, J. N. B., & Marshall, F. (2006). The effect of air pollution on yield and quality of Mung bean grown in peri-urban areas of Varanasi. Water, Air, and Soil Pollution, 169, 239–254.CrossRefGoogle Scholar
  2. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist, 165, 351–371.CrossRefGoogle Scholar
  3. Ainsworth, E. A., & McGrath, J. M. (2010). Direct effects of rising atmospheric carbon dioxide and ozone on crop yields. Climate Change and Food Security Advances in Global Change Research, 37(II), 109–130.CrossRefGoogle Scholar
  4. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions. Plant, Cell & Environment, 30, 258–270.CrossRefGoogle Scholar
  5. Ainsworth, E. A., Rogers, A., & Leakey, A. D. B. (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147(1), 13–9.CrossRefGoogle Scholar
  6. AOAC (1960). Official method of analysis of the Association of Official Agricultural Chemists, Washington D.C. 9th ed. pp. 15–16.Google Scholar
  7. Ariyaphanphitak, W., Chidthaisong, A., Sarobol, E., Bashkin, V. N., & Towprayoon, S. (2005). Effects of elevated ozone concentrations on Thai jasmine rice cultivars (Oryza sativa L.). Water, Air, and Soil Pollution, 167, 179–200.CrossRefGoogle Scholar
  8. Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment, 45, 2297–2309.CrossRefGoogle Scholar
  9. Bhatia, A., Ghosh, A., Kumar, V., Tomer, R., Singh, S. D., & Pathak, H. (2011). Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agriculture Ecosystem Environment, 144, 21–28.CrossRefGoogle Scholar
  10. Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G., & Jiang, G. M. (2008). Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology, 14, 46–59.Google Scholar
  11. Black, V. J., Stewart, C. A., Roberts, J. A., & Black, C. R. (2007). Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants). New Phytologist, 176, 150–163.CrossRefGoogle Scholar
  12. Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W. J., Krupa, S., Chappelka, A., & Grantz, D. (2009). The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51, 337–351.CrossRefGoogle Scholar
  13. Burkey, K. O., Booker, F. L., Pursley, W. A., & Heagle, A. S. (2007). Elevated carbon dioxide and ozone effects on peanut. II. Seed yield and quality. Crop Science, 47, 1488–1497.CrossRefGoogle Scholar
  14. Cao, J. L., Wang, L., Zeng, Q., Liang, J., Tang, H. Y., Xie, Z. B., Gaang, L., Zhu, J. G., & Kazhuhiko, K. (2009). Characteristics of photosynthesis in wheat cultivars with different sensitivities to ozone under O3-free air concentration enrichment conditions. Acta Agronomica Sinica, 35, 1500–1507.Google Scholar
  15. Chesnin, L., & Yien, C. H. (1950). Turbidimetric determination of available sulphate. Proceeding of the Soil Science Society of America, 15, 149–151.CrossRefGoogle Scholar
  16. De Bock, M., Op de Beeck, M., De Ludwig, T., Yves, G., Reinhart, C., & Karine, V. (2011). Ozone dose–response relationships for spring oilseed rape and broccoli. Atmospheric Environment, 45(9), 1759–1765.Google Scholar
  17. Eastburn, D., Degennarow, M. S. S. A. M., Deluciaz, E. H., Dermody, O., & Mcelrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.CrossRefGoogle Scholar
  18. Emberson, L. D., Buker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., & Wahid, A. (2009). A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmospheric Environment, 43, 1945–1953.CrossRefGoogle Scholar
  19. Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology, 14, 2696–2708.Google Scholar
  20. Feng, Z., Wang, S., Szantoi, Z., Chen, S., & Wang, X. (2010). Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environmental Pollution, 158, 3236–3242.CrossRefGoogle Scholar
  21. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: Wiley. An International Rice Research Institute Book. A Wiley-Inter-science Publication.Google Scholar
  22. Grandjean, A., & Fuhrer, J. (1989). Growth and leaf senescence in spring wheat (Triticum aestivum) grown at different ozone concentrations in open-top field chambers. Physiologia Plantarum, 77, 389–394.CrossRefGoogle Scholar
  23. Heagle, A. S., Miller, J. E., & Pursley, W. A. (1998). Influence of ozone stress on soybean response to carbon dioxide enrichment. III. Yield and seed quality. Crop Science, 38, 128–134.CrossRefGoogle Scholar
  24. Heath, R. L., Lefohn, A. S., & Musselman, R. C. (2009). Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmospheric Environment, 43, 2919–2928.CrossRefGoogle Scholar
  25. Hedge, D.M. (2005). Oilseed scenario in India—past, present and future with special reference to rapeseed-mustard. In: Winter School on Advances in Rapeseed-Mustard Research Technology for Sustainable Production of Oilseeds, National Centre on Rapeseed-Mustard, Sewar, Bharatpur, Dec 15 to Jan 04, 2005, 1–15.Google Scholar
  26. Hogy, P., & Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science, 48, 580–591.CrossRefGoogle Scholar
  27. IPCC. (2007). In M. L. Parry, O. F. Canziani, J. P. Paultikof, P. J. van der Linden, & C. E. Hanon (Eds.), Climate change—impacts, adaptation and vulnerability. Technical summary of Working group II. Fourth Assessment Report Inter-governmental Panel on Climate Change (pp. 23–78). Cambridge: Cambridge University press.Google Scholar
  28. Jackson, M. L. (1973). Soil Chemical Analysis. New Delhi: Prentice Hall of India Pvt.Ltd.Google Scholar
  29. Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society of London Series B, Biological, 365, 2835–2851.CrossRefGoogle Scholar
  30. Karberg, N. J., Pregitzer, E. K. S., King, E. J. S., Friend, A. L., & Wood, E. J. R. (2005). Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia, 142, 296–306.CrossRefGoogle Scholar
  31. Kharel, K., & Amgain, L. P. (2010). Assessing the impact of ambient ozone on growth and yield of crop at Rampur, Chitwan. The Journal of Agriculture and Environment, 11, 40–45.Google Scholar
  32. Kollner, B., & Krause, G. H. M. (2003). Effects of two different ozone exposure regimes on chlorophyll and sucrose content of leaves and yield parameters of sugar beet (Beta vulgaris) and rape (Brassica napus). Wate, Air and Soil Pollution, 144, 317–332.CrossRefGoogle Scholar
  33. Leisner, C. P., & Ainsworth, E. A. (2012). Quantifying the effects of ozone on plant reproductive growth and development. Global Change Biology, 18(2), 606–616.CrossRefGoogle Scholar
  34. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–1921.CrossRefGoogle Scholar
  35. Morgan, P. B., Mies, T. A., Bollero, A., Nelson, R. L., & Long, S. P. (2006). Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytologist, 170, 333–343.CrossRefGoogle Scholar
  36. Piikki, K., De Temmerman, L., Ojanpera, K., Danielsson, H., & Pleijel, H. (2008). The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. European Journal of Agronomy, 28, 245–254.CrossRefGoogle Scholar
  37. Pleijel, H., & Uddling, J. (2011). Yield vs. quality trade-offs for wheat in response to carbon dioxide and ozone. Global change Biology. doi:  10.1111/j.1365-2486.2011.02489.x
  38. Pleijel, H., Mortensen, L., Fuhrer, J., Ojanpera, K., & Danielsson, H. (1999). Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agriculture, Ecosystems and Environment, 72, 265–270.CrossRefGoogle Scholar
  39. Rai, R., Agrawal, M., & Agrawal, S. B. (2010). Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmospheric Environment, 44, 4272–4282.CrossRefGoogle Scholar
  40. Singh, P., Agrawal, M., & Agrawal, S. B. (2009). Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environmental Pollution, 157, 871–880.CrossRefGoogle Scholar
  41. Singh, S., Kaur, D., Agrawal, S. B., & Agrawal, M. (2010). Responses of two cultivars of Trifolium repens L. to ethylene diurea in relation to ambient ozone. Journal of Environment. Science (China), 22, 1096–103.CrossRefGoogle Scholar
  42. Singh, P., Singh, S., Agrawal, S. B., & Agrawal, M. (2012). Assessment of the interactive effects of ambient O3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using open-top chambers. Environ Monitoring and Assessment, 184, 5863–5874.CrossRefGoogle Scholar
  43. Tiwari, P. N., Gambhir, P. N., & Rajan, T. S. (1974). Rapid and non-destructive determination of seed oil by pulsed NMR technique. Journal of American Oil Chemist Society, 51, 104–109.CrossRefGoogle Scholar
  44. Uprety, D. C., Sangita, S., & Neeta, D. (2010). Rising atmospheric carbon dioxide on grain quality in crop plants. Physiology and Molecular Biology of Plants, 16(3), 215–227.CrossRefGoogle Scholar
  45. Vandermeiren, K., Black, C., Pleijel, H., & Temmerman, L. D. (2005). Impact of rising tropospheric ozone on potato: effects on photosynthesis, growth, productivity and yield quality. Plant, Cell & Environment, 28, 982–996.CrossRefGoogle Scholar
  46. Vandermeiren, K., De Bock, M., Horemans, N., Guisez, Y., Ceulemans, R., & De Temmerman, L. (2012). Ozone effects on yield quality of spring oilseed rape and broccoli. Atmospheric Environment, 47, 76–83.CrossRefGoogle Scholar
  47. Varshney, C. K., & Aggarwal, M. (1992). Ozone pollution in the urban atmosphere of Delhi. Atmospheric Environment, 26, 291–294.Google Scholar
  48. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 33, 3431–3442.CrossRefGoogle Scholar
  49. Wahid, A. (2006). Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Science of the Total Environment, 371, 304–313.CrossRefGoogle Scholar
  50. Wahid, A., Ahmad, S. S., Zhao, Y., & Bell, J. N. B. (2012). Evaluation of ambient air pollution effects on three cultivars of Sesame (Sesamum indicum L.) by using ethylenediurea. Pakistan Journal of Botany, 44, 99–110.Google Scholar
  51. Wang, X., Zheng, Q., Feng, Z., Xie, J., Feng, Z., Ouyang, Z., & Manning, W. J. (2008). Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China. Environmental Pollution, 156, 449–453.Google Scholar
  52. Zhu, X., Feng, Z., Sun, T., Liu, X., Tang, H., Zhu, J., Guo, W., & Kobayashi, K. (2011). Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biology, 17, 2697–2706.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Satyavan Singh
    • 1
  • Arti Bhatia
    • 1
  • Ritu Tomer
    • 1
  • Vinod Kumar
    • 1
  • B. Singh
    • 1
  • S. D. Singh
    • 1
  1. 1.Centre for Environment Science and Climate Resilient AgricultureIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations