Environmental Monitoring and Assessment

, Volume 185, Issue 7, pp 6035–6047 | Cite as

Element content of propolis collected from different areas of South Spain

  • J. Serra Bonvehí
  • F.J. Orantes Bermejo


The aim of this work is to determine the content of essential and toxic elements in 25 raw propolis samples, when considering pollution agents and geographical and botanical factors. The microwave-assisted digestion was the most reliable and accurate method for determination of inorganic elements in propolis samples. The results were obtained using certified reference materials in a good agreement with certified values. Inductively coupled plasma atomic emission spectroscopy was used for the determination of 23 macro- and microelements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, and Zn). A Mercury analyzer was also utilized for the detection of the total Hg. Among the analyzed metals, Ca, K, Mg, Zn, Si, S, Fe, Al, P, and Na were found to be the most predominant. Heavy metals (As, Cd, Hg, and Pb) were determined in minimal concentration, and Pb was the highest mean contained toxic (<3.80 mg/kg), without influence on provisional tolerable weekly intake values. The method can be applied for routine analysis and quality and environmental pollution controls of toxic elements in propolis samples. The results obtained indicate no pollution of the collection areas and naturally high concentration of Al (460 ± 62.2 mg/kg).


Propolis Heavy metals Trace elements ICP-AES Mercury analyzer 


  1. Alcici, N. & Freire, M. (2002). Heavy metals in propolis: Practical and simple procedures to reduce the lead in the Brazilian propolis, First German Bee Products and Apitherapy Congress with International ParticipationGoogle Scholar
  2. Bankova, V., Chistov, R., & Delgado Tejera, A. (1998). Lignans and other constituents of propolis from the Canary Islands. Phytochemistry, 49, 1411–1415.CrossRefGoogle Scholar
  3. Barth, O. M. (1998). Pollen analysis of Brazilian propolis. Grana, 37, 97–103.CrossRefGoogle Scholar
  4. Bogdanov, S. (2006). Contaminants of bee products. Apidologie, 37, 1–18.CrossRefGoogle Scholar
  5. Bogdanov, S., Haldimann, M., Luginbühl, W., & Gallmann, P. (2007). Mineral in honey: Environmental, geographical and botanical aspects. Journal of Apicultural Research and Bee World, 46, 269–275.Google Scholar
  6. Bonvehi, J. S., Coll, F. V., & Jordà, R. E. (1994). The composition, active components and bacteriostatic activity of propolis in dietetics. Journal of the American Oil Chemists’ Society, 71, 529–532.CrossRefGoogle Scholar
  7. Bonvehi, J. S., & Gutiérrez, A. L. (2011). Antioxidant activity and total phenolics of propolis from the Basque Country (Northeastern Spain). Journal of the American Oil Chemists’ Society, 83, 1387–1395.CrossRefGoogle Scholar
  8. Bonvehi, J.S. & Coll, F.V. (2000). Study of propolis quality from China and Uruguay. Zeitschrift für Naturforschung 55c, 778–784Google Scholar
  9. Burdock, G. A. (1998). Review of the biological properties and toxicity of bee propolis. Food and Chemical Toxicology, 36, 347–363.CrossRefGoogle Scholar
  10. Campbell, A. (2002). The potential role of aluminium in Alzheimer’s disease. Nephrology, Dialysis, Transplantation, 7, 17–20.CrossRefGoogle Scholar
  11. Cantarelli, M. A., Camiña, J. M., Pettenati, E. M., Marchevsky, E. J., & Pellerano, R. G. (2011). Trace mineral content of Argentinean raw propolis by neutron activation analysis (NAA): Assessment of geographical provenance by chemometrics. LWT- Food Science and Technology, 44, 256–260.CrossRefGoogle Scholar
  12. Cvek, J., Medic-Saric, M., Vitalli, D., Vedrina-Dragojevic, I., & Smit, Z. (2008). The content of essential and toxic elements in Croatian propolis samples and their tinctures. Journal of Apicultural Research and Bee World, 47, 35–45.CrossRefGoogle Scholar
  13. Dogan, M., Silici, S., Saraymen, R., & Ilhan, I. Q. (2006). Element content of propolis from different regions of Turkey. Acta Alimentaria, 5, 127–130.CrossRefGoogle Scholar
  14. European Communities Commission Regulation (EC) (2006). No 1881/2006 on setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L364/5, pp. 1–20Google Scholar
  15. FAO/WHO. (2007). Evaluation of certain food additives and contaminants: Sixty-seventh Report of the Joint FAO/WHO Expert Committee on Food Additives: Technical report series, no. 940. Geneva: World Health Organization. ISBN 9241209402, 103 ppGoogle Scholar
  16. FAO/WHO. (2011). The 53rd Meeting of the Joint Expert Committee on Food Additives. htpp:// (last access November 2012)
  17. Gong, S., Luo, L., Gong, W., Gao, Y., & Xie, M. (2012). Multivariate analyses of element concentrations revealed the groupings of propolis from different regions in China. Food Chemistry, 134, 583–588.CrossRefGoogle Scholar
  18. ICH (International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use). (1996). Guideline validation of analytical procedures: Text and methodology, ICH-Q2B. Geneva: Switzerland.Google Scholar
  19. International Food Information Service (2005) IFIS dictionary of food science and technology. Shinfield Fl: International Food Information Service (IFIS Publishing), Blackwell Publishing 157Google Scholar
  20. Jain, C. K., & Ali, I. (2002). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34, 4304–4312.CrossRefGoogle Scholar
  21. Kalbande, D. M., Dhase, S. N., Chaudhari, P. R., & Wate, S. R. (2008). Biomonitoring of heavy metals by pollen urban environment. Environmental Monitoring and Assessment, 138, 233–238.CrossRefGoogle Scholar
  22. Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Chrostov, R., & Popov, S. (1999). Antimicrobial, antifungal and antiviral activity of propolis of different geographic origin. Journal of Etnopharmacology, 64, 235–240.CrossRefGoogle Scholar
  23. Kulevanova, S., Stafilov, T., & Doreski, K. (1995). Determination of some macroelements in propolis by atomic absorption spectroscopy. Acta Pharmaceutica, 45, 45–52.Google Scholar
  24. Larner, B. L., Seen, A. J., & Towsend, A. T. (2006). Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the certified material NIST 2711. Analytical Chimica Acta, 556, 444–449.CrossRefGoogle Scholar
  25. Madras-Majewska, B., & Jasinski, Z. (2003). Lead contents of bee, broad and bee products from different regions of Poland. Journal of Apicultural Science, 47, 47–54.Google Scholar
  26. Mermet, J. M., & Poussel, E. (1995). ICP emission spectrometers: Analytical figures of merit. Journal of Applied Spectroscopy, 49, 12–18.Google Scholar
  27. Morgano, M. A., Teixera Martins, M. C., Rabonato, L. C., MIlani, R. F., Yotsuyanagi, K., & Rodriguez-Amaya, D. B. (2010). Inorganic contaminants in bee pollen from southeastern Brazil. Journal of Agriculture and Food Chemistry, 58, 6876–6883.CrossRefGoogle Scholar
  28. New Zealand Food Safety Authority. (2006). Code of practice: Processing of bee products: Part 2: Good manufacturing practice. Wellington: New Zealand Standards Group.Google Scholar
  29. Nicolae, E., & Tatiana, D. (2007). The content of micro- and macroelements in propolis. Bulletin USAMV-CN, 63, 63–64.Google Scholar
  30. Ojeda, F., Arroyo, J., & Marañón, T. (1995). Biodiversity components and conservation of Mediterranean heathlands in southern Spain. Biological Conservation, 72, 61–72.CrossRefGoogle Scholar
  31. Orsi, R. O., Funari, S. R. C., Barbattini, R., Giovani, C., Frilli, F., Sforcin, J. M., & Bankova, V. (2006). Radionuclides in honeybee propolis (Apis mellifera L.). Bulletin of Environmental Contamination and Toxicology, 76, 637–640.CrossRefGoogle Scholar
  32. Perugini, M., Manera, M., Grotta, L., Abete, M. C., Tarasco, R., & Amorena, M. (2011). Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: Honeybees as indicators. Biological Trace Element Research, 140, 170–176.CrossRefGoogle Scholar
  33. Rodríguez, E. G., Abellan, B., & Villanueva, M. T. O. (1999). Macroelements in dietetic products containing propolis. Food Chemistry, 66, 15–19.CrossRefGoogle Scholar
  34. Sales, A., Alvarez, A., Rodríguez, A. M., Maldonado, L., Marchisio, P., Rodriguez, M., & Bedascarrasbure, E. (2006). The effect of different propolis harvest methods on its lead content determined by ET AAS and UV-VisS. Journal of Hazardous Materials A, 137, 1352–1356.CrossRefGoogle Scholar
  35. Sforcin, J. M., & Bankova, V. (2011). Propolis: Is there a potential for the development of new drugs? Journal of Etnopharmacology, 133, 253–260.CrossRefGoogle Scholar
  36. Spanish Ministry of Agriculture, Food and Environment. (2010). New encyclopedia of Andalusia. Junta de Andalucía–Consejeria de Agricultura, Pesca y Medio Ambiente, Seville, SpainGoogle Scholar
  37. Srogi, K. (2006). Application of microwaves techniques for elemental analysis: A review. Analytical Letters, 39, 1261–1288.CrossRefGoogle Scholar
  38. Tuzen, M., Sari, H., & Soylak, M. (2004). Microwave and wet digestion procedures for atomic absorption spectrometric determination of trace elements contents of sediment samples. Analytical Letters, 37, 1925–1936.CrossRefGoogle Scholar
  39. UK Food Standards Agency, MAFF U.K. (1995). Analysis of bee products for heavy metals. Food surveillance, information sheet, number 53. UK Food Standards Agency. FebruaryGoogle Scholar
  40. Vogt, W., & Nagel, D. (1992). Cluster analysis in diagnosis. Clinical Chemistry, 28, 182–198.Google Scholar
  41. Yamamoto, T. (1996). Present state of basic studies on propolis in Japan Speech of the International Conference on Bee Product Properties and Application and Apitherapy. Israel: Tel-Aviv.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Research and Development of Nederland CoViladecans (Barcelona)Spain
  2. 2.Apinevada Analytical Laboratory of Bee ProductsLanjarónSpain

Personalised recommendations