Environmental Monitoring and Assessment

, Volume 185, Issue 7, pp 5847–5860 | Cite as

Air quality assessment of Estarreja, an urban industrialized area, in a coastal region of Portugal

  • M. L. Figueiredo
  • A. Monteiro
  • M. Lopes
  • J. Ferreira
  • C. Borrego
Article

Abstract

Despite the increasing concern given to air quality in urban and industrial areas in recent years, particular emphasis on regulation, control, and reduction of air pollutant emissions is still necessary to fully characterize the chain emissions–air quality–exposure–dose–health effects, for specific sources. The Estarreja region was selected as a case study because it has one of the largest chemical industrial complexes in Portugal that has been recently expanded, together with a growing urban area with an interesting location in the Portuguese coastland and crossed by important road traffic and rail national networks. This work presents the first air quality assessment for the region concerning pollutant emissions and meteorological and air quality monitoring data analysis, over the period 2000–2009. This assessment also includes a detailed investigation and characterization of past air pollution episodes for the most problematic pollutants: ozone and PM10. The contribution of different emission sources and meteorological conditions to these episodes is investigated. The stagnant meteorological conditions associated with local emissions, namely industrial activity and road traffic, are the major contributors to the air quality degradation over the study region. A set of measures to improve air quality—regarding ozone and PM10 levels—is proposed as an air quality management strategy for the study region.

Keywords

Industry and traffic emissions Air quality Air pollution episodes Ozone Particulate matter 

References

  1. APA (2011). Portuguese National Inventory Report on Greenhouse Gases, 1990–2009. Portuguese Environmental Agency, April 2011, Amadora. Available at: http://www.apambiente.pt/politicasambiente/Ar/InventarioNacional/Documents/NIR_20110415_v20110515.pdf
  2. Bartzis, J., Sfetsos, A., & Andronopoulos, S. (2008). On the individual exposure from airborne hazardous releases: the effect of atmospheric turbulence. Journal of Hazardous Materials, 150(1), 76–82.CrossRefGoogle Scholar
  3. Borrego, C., Miranda, A., Coutinho, M., Ferreira, J., & Carvalho, A. (2002). Air quality management in Portugal: example of needs and available tools. Environmental Pollution, 120, 115–123.CrossRefGoogle Scholar
  4. Borrego, C., Valente, J., Carvalho, A., Sá, E., Lopes, M., & Miranda, A. I. (2010). Contribution of residential wood combustion to PM10 levels in Portugal. Atmospheric Environment, 44(5), 642–651.CrossRefGoogle Scholar
  5. Draxler, R. R. & Rolph, G. D. (2011). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory, Silver Spring, MD. Available at: http://ready.arl.noaa.gov/HYSPLIT.php.
  6. Ferreira, J., Martins, H., Monteiro, A., Miranda, A. I., & Borrego, C. (2006). Air quality modelling application to evaluate effects of PM air concentrations on urban population exposure. Epidemiology, 17(6), S252–S253.CrossRefGoogle Scholar
  7. Monteiro, A., Miranda, A., Borrego, C., & Vautard, R. (2007). Air quality assessment for Portugal. Science of the Total Environment, 373, 22–31.CrossRefGoogle Scholar
  8. Monteiro, A., Strunk, A., Carvalho, A., Tchepel, O., Miranda, A. I., Borrego, C., et al. (2012). Investigating a high ozone episode in a rural mountain site (north of Portugal). Environmental Pollution, 162, 176–189.CrossRefGoogle Scholar
  9. Oke, T. R. (1987). Boundary layer climates. London: Routledge.Google Scholar
  10. Perez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Ozsoy, E. (2006). Interactive dust-radiation modeling: a step to improve weather forecasts. Journal of Geophysical Research, 111, D16206. doi:10.1029/2005JD006717.CrossRefGoogle Scholar
  11. Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment, 43(1), 37–50.CrossRefGoogle Scholar
  12. Reid, N., Misra, P. K., Amman, M., & Hales, J. (2007). Air quality modelling for policy development. Journal of Toxicology and Environmental Health—Part A, 70(3–4), 295–310.CrossRefGoogle Scholar
  13. Rodriguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35, 2433–2447.CrossRefGoogle Scholar
  14. Schnelle, K.B. and Brown, C.A. (2001). Air pollution control technology handbook. 5th edition. Upper Saddle River: Prentice Hall, 792 pp.Google Scholar
  15. Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley. ISBN 9780471178163.Google Scholar
  16. Sexton, K., Wagener, D., Selevan, S., Miller, T., & Lybarger, J. (2007). Current state of the science: health effects and indoor environmental quality. Environmental Health Perspectives, 115(6), 958–964.CrossRefGoogle Scholar
  17. Wagner, F., Bortoli, D., Pereira, S., Costa, M. J., Silva, A. M., Weinzier, B., et al. (2009). Properties of dust aerosol particles transported to Portugal from the Sahara desert. Tellus, 61B, 297–306.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • M. L. Figueiredo
    • 1
  • A. Monteiro
    • 1
  • M. Lopes
    • 1
  • J. Ferreira
    • 1
  • C. Borrego
    • 1
  1. 1.CESAM—Centre for Environmental and Marine Studies, Department of Environment and PlanningUniversity of AveiroAveiroPortugal

Personalised recommendations