Environmental Monitoring and Assessment

, Volume 185, Issue 7, pp 5801–5815 | Cite as

Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina)

  • Agustina Cortelezzi
  • María Victoria Sierra
  • Nora Gómez
  • Claudia Marinelli
  • Alberto Rodrigues Capítulo


Our objective was to assess the effect of the physical habitat degradation in three lowland streams of Argentina that are subject to different land uses. To address this matter, we looked into some physical habitat alterations, mainly the water quality and channel changes, the impact on macrophytes’ community, and the structural and functional descriptors of the epipelic biofilm and invertebrate assemblages. As a consequence of physical and chemical perturbations, we differentiated sampling sites with different degradation levels. The low degraded sites were affected mainly for the suburban land use, the moderately degraded sites for the rural land use, and the highly degraded sites for the urban land use. The data shows that the biotic descriptors that best reflected the environmental degradation were vegetation cover and macrophytes richness, the dominance of tolerant species (epipelic biofilm and invertebrates), algal biomass, O2 consumption by the epipelic biofilm, and invertebrates’ richness and diversity. Furthermore, the results obtained highlight the importance of the macrophytes in the lowland streams, where there is a poor diversification of abiotic substrates and where the macrophytes not only provide shelter but also a food source for invertebrates and other trophic levels such as fish. We also noted that both in benthic communities, invertebrates and epipelic biofilm supplied different information: the habitat’s physical structure provided by the macrophytes influenced mainly the invertebrate descriptors; meanwhile, the water quality mainly influenced most of the epipelic biofilm descriptors.


Macrophytes Epipelic biofilm Invertebrates Lowland streams Environmental degradation 


  1. Abdi, H., & Valentin, D. (2007). Multiple factor analysis. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics (pp. 657–663). Thousand Oaks (CA): Sage.Google Scholar
  2. APHA. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association and Water Pollution Control Federation.Google Scholar
  3. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish (2nd ed.). Washington, D.C: US Environmental Protection Agency; Office of Water. EPA 841-B-99-002.Google Scholar
  4. Bauer, D. E., Donadelli, J., Gómez, N., Licursi, M., Ocón, C., Paggi, A. C., et al. (2002). Ecological status of the Pampean plain streams and rivers (Argentina). Verhandlungen des Internationalen Verein Limnologie, 28, 259–262.Google Scholar
  5. Biggs, B. J. F. (1989). Biomonitoring of organic pollution using periphyton, South Branch, Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research, 23(2), 263–274.CrossRefGoogle Scholar
  6. Bode, R. W., Novak, M. A., & Abele, L. E. (2002). Quality assurance work plan for biological stream monitoring in New York State. Albany, New York: NYS Department of Environmental Conservation.Google Scholar
  7. Bonetto, A. A., & Wais, I. R. (1995). Southern South American streams and rivers. In C. E. Cushing, K. W. Cummins, & G. W. Minshall (Eds.), Ecosystems of the world. Rivers and stream ecosystems (pp. 257–293). Amsterdam: Elsevier.Google Scholar
  8. Bourassa, N. A., & Cattaneo, A. (1998). Control of periphyton biomass in Laurentian streams (Québec). (1988). Journal of the North American Benthological Society, 17, 420–424.CrossRefGoogle Scholar
  9. Brook, S. S., Palmer, M. A., Cardinale, B. J., Swan, C. M., & Riblett, S. (2002). Assessing stream ecosystems rehabilitation: limitations of community structure data. Restoration Ecology, 10, 156–168.CrossRefGoogle Scholar
  10. Brookes, A., & Gregory, K. J. (1988). Channelization, river engineering and geomorphology. In J. M. Hooke (Ed.), Geomorphology in Environmental Planning (pp. 145–168). Chichester: Wiley.Google Scholar
  11. Buffagni, A., Casalegno, C., & Erba, S. (2009). Hydromorphology and land use at different spatial scales: expectations from medium-sized rivers of the Western Italian Alps in a changing climate scenario. Fundamental and Applied Limnology—Archiv für Hydrobiologie, 174, 7–25.CrossRefGoogle Scholar
  12. Bunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology, 41, 333–345.CrossRefGoogle Scholar
  13. Burkart, R., del Valle Ruiz, L., Daniele, C., Natenzon, C., Ardura, F., & Balabusic, A. (1994). El Sistema Nacional de Áreas Naturales Protegidas de la Argentina. Buenos Aires, Argentina: Administración de Parques Nacionales.Google Scholar
  14. Buss, D. F., Baptista, D. F., Silveira, M. P., Nessimian, J. L., & Dorville, L. F. M. (2002). Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125–136.CrossRefGoogle Scholar
  15. Cabrera, A. L. (1976). Regiones Fitogeográficas Argentinas. In I. I. Fascículo (Ed.), Enciclopedia Argentina de Agricultura y Ganadería. Buenos Aires, Argentina: Acme S.A.C.I.Google Scholar
  16. Cabrera, A. L., & Zardini, E. M. (1993). Manual de la flora de los alrededores de Buenos Aires. Buenos Aires: ACME.Google Scholar
  17. Callisto, M., Moreno, C. E., & Barbosa, F. A. R. (2001). Habitat diversity and benthic functional trophic groups at Serra do Cipo, southeast Brazil. Revista Brasileira de Biologia, 61, 259–266.CrossRefGoogle Scholar
  18. Cortelezzi, A. (2010). Hábitats funcionales y macroinvertebrados en cauces modificados de arroyos de llanura: impacto sobre la calidad ecológica. PhD dissertation, FCNyM-UNLP, Argentina.Google Scholar
  19. Cortelezzi, A., Paggi, A. C., Rodríguez, M., & Rodrigues Capítulo, A. (2011). Taxonomic and nontaxonomic responses to ecological changes in an urban lowland stream through the use of Chironomidae (Diptera) larvae. Science of the Total Environment, 409, 1344–1350.CrossRefGoogle Scholar
  20. Covich, A. P. (1988). Geographical and historical comparisons of neotropical streams: biotic diversity and detrital processing in highly variable habitats. Journal of the North American Benthological Society, 7, 361–386.CrossRefGoogle Scholar
  21. Craft, C., Krull, K., & Graham, S. (2007). Ecological indicator of nutrient enrichment, freshwater wetlands, Midwestern United States (US). Ecological Indicators, 7, 733–750.CrossRefGoogle Scholar
  22. Dauer, D. M., Ranasinghe, J. A., & Weisberg, S. B. (2000). Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries and Coasts, 23(1), 80–96.CrossRefGoogle Scholar
  23. Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification for stream trophic state: distributions of temperate stream types by chlorophyll, total N and P. Water Research, 32, 1455–1462.CrossRefGoogle Scholar
  24. Feijoó, C., & Menéndez, M. (2009). La biota de los ríos: los macrófitos. In A. Elosegui & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 243–251). Bilbao: Fundación BBVA.Google Scholar
  25. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., et al. (2005). Global consequences of land use. Science, 309, 570–574.CrossRefGoogle Scholar
  26. Fossati, O., Wasson, J. G., Hery, C., Marin, R., & Salinas, G. (2001). Impact of sediment releases on water chemistry and macroinvertebrate communities in clear water Andean streams (Bolivia). Archiv für Hydrobiologie, 151, 33–50.Google Scholar
  27. Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.CrossRefGoogle Scholar
  28. Giorgi, A., & Malacalza, L. (2002). Effect of an industrial discharge on water quality and periphyton structure in a Pampean stream. Environmental Monitoring and Assessment, 75(2), 107–119.CrossRefGoogle Scholar
  29. Giorgi, A., Feijoó, C., & Tell, G. (2005). Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservervation, 14, 1699–1718.CrossRefGoogle Scholar
  30. Gómez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35, 173–181.CrossRefGoogle Scholar
  31. Gómez, N., Sierra, M. V., Cortelezzi, A., & Rodrigues Capítulo, A. (2008). Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicology and Environmental Safety, 69, 472–479.CrossRefGoogle Scholar
  32. Gómez, N., Donato, J. C., Giorgi, A., Guasch, H., Mateo, P., & Sabater, S. (2009). La biota de los ríos: los microorganismos autótrofos. In A. Elosegui & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 219–242). Bilbao: Fundación BBVA.Google Scholar
  33. González del Tánago, M., & García de Jalón, D. (2004). Recuperación de espacios degradados: cursos de agua desnaturalizados. In D. Gómez Orea (Ed.), Restauración de espacios degradados. Cursos de agua desnaturalizados (pp. 465–486). Madrid: Mundi-Prensa.Google Scholar
  34. Greenacre, M. (2010). Biplots in practice. Fundacion BBVA. Madrid. http://www.multivariatestatistics.org. Accessed 10 August 2011.
  35. Harper, D., & Everard, M. (1998). Why should the habitat-level approach underpin holistic river survey and management? Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 395–413.CrossRefGoogle Scholar
  36. Hearne, J. W., & Armitage, P. D. (1993). Implications of the annual macrophyte growth-cycle on habitat in rivers. Regulated Rivers: Research & Management, 8, 313–322.CrossRefGoogle Scholar
  37. Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a multi metric index for biological condition of aquatic ecosystems: experiences form the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566, 311–324.CrossRefGoogle Scholar
  38. Hill, W. R., Ryon, M. G., Smith, J. G., Adams, S. M., Boston, H. L., & Stewart, A. J. (2010). The role of periphyton in mediating the effects of pollution in a stream ecosystem. Environmental Management, 45, 563–576.CrossRefGoogle Scholar
  39. Hilsenhoff, W. L. (1987). An improved biotic index of organic stream pollution. Great Lakes Entomologist, 20, 31–39.Google Scholar
  40. Hinck, S., Neu, T. R., Lavik, G., Mußmann, M., De Beer, D., & Jonkers, H. M. (2007). Physiological adaptation of nitrate storing Beggiatoa to diel cycling in a phototrophic hypersaline mat. Applied and Environmental Microbiology, 73, 7013–7022.CrossRefGoogle Scholar
  41. Hurtado, M. A., Giménez, J. E., & Cabral, M. G. (2006). Análisis ambiental del partido de La Plata. Aportes del ordenamiento territorial (1st ed.). Buenos Aires, Argentina: Consejo Federal de Inversiones.Google Scholar
  42. Jacobsen, D., & Sand-Jensen, K. (1994). Invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus in a Danish stream. Freshwater Biology, 31, 43–52.CrossRefGoogle Scholar
  43. Jowett, I. G. (1997). Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management, 13, 115–127.CrossRefGoogle Scholar
  44. Kail, J., Jahnig, S. C., & Hering, D. (2009). Relation between floodplain land use and river hydromorphology on different spatial scales – a case study from two lower-mountain catchments in Germany. Fundamental and Applied Limnology—Archiv für Hydrobiologie, 174, 63–73.CrossRefGoogle Scholar
  45. Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: better biological monitoring. Washington DC: Island Press.Google Scholar
  46. Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, Beiheft, 64, 285–304.Google Scholar
  47. Licursi, M. (2005). Efectos de las perturbaciones antropogénicas sobre la taxocenosis de diatomeas bentónicas en sistemas lóticos pampeanos. PhD dissertation, FCNyM-UNLP, Argentina.Google Scholar
  48. Licursi, M., & Gómez, N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales de Limnologie, 38(2), 109–118.CrossRefGoogle Scholar
  49. Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. Scientific Publication (Freshwater Biological Association), 36, 124.Google Scholar
  50. Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29, 134–153.CrossRefGoogle Scholar
  51. McChesney, C. (1994). Literature review of the genus Hydrocotyle L. (Apiaceae), with particular emphasis on Hydrocotyle ranunculoides. Perth, W.A.: Swan River Trust.Google Scholar
  52. Merrit, R. W., & Cummins, K. W. (1996). Trophic relations of macroinvertebrates. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology. San Diego: Academic Press.Google Scholar
  53. Moya, N., Domínguez, E., Goitia, E., & Oberdorff, T. (2011). Desarrollo de un índice multimétrico basado em macroinvertebrados acuáticos para evaluar la integridad biológica en ríos de los valles interandinos de Bolivia. Ecología Austral, 21, 135–147.Google Scholar
  54. Ocón, C. S., & Rodrigues Capítulo, A. (2004). Presence and abundance of Ephemeroptera and other sensitive macroinvertebrates in relation with habitat conditions in pampean streams (Buenos Aires, Argentina). Archiv für Hydrobiologie, 159, 473–487.CrossRefGoogle Scholar
  55. Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology, Evolution, and Systematics, 32, 333–365.CrossRefGoogle Scholar
  56. Pedersen, M. L., Friberg, N., & Larsen, S. E. (2004). Physical habitat structure in Danish lowland streams. River Research and Applications, 20, 653–669.CrossRefGoogle Scholar
  57. Poi de Neiff, A. S., & Neiff, J. J. (1989). Dry weight loss and colonization by invertebrates of Eichhornia crassipes under aerobic conditions. Journal of Tropical Ecology, 30, 175–182.Google Scholar
  58. Reid, H. E., Brierley, G. J., & Boothroyd, I. K. G. (2010). Influence of bed heterogeneity and habitat type on macroinvertebrate uptake in peri-urban streams. International Journal of Sediment Research, 25(3), 203–220.CrossRefGoogle Scholar
  59. Rodrigues Capítulo, A., Tangorra, M., & Ocón, C. S. (2001). Use of benthic macroinvertebrate to assess the ecological status of pampean rivers (Argentine). Aquatic Ecology, 35, 109–119.CrossRefGoogle Scholar
  60. Rodrigues Capítulo, A., Gómez, N., Giorgi, A., & Feijoo, C. (2010). Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia, 657, 53–70.CrossRefGoogle Scholar
  61. Sandin, L. (2009). The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrates in the Ema catchment, south Sweden. Fundamental and Applied Limnology - Archiv für Hydrobiologie, 174, 75–87.CrossRefGoogle Scholar
  62. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Chicago: University of Illinois Press.Google Scholar
  63. Sierra, M. V. (2009). Microbentos de sistemas lóticos pampeanos y su relación con la calidad del agua: respuestas estructurales y funcionales. PhD dissertation, FCNYM-UNLP, Argentina.Google Scholar
  64. Sierra, M. V., & Gómez, N. (2007). Structural characteristics and oxygen consumption of the epipelic biofilm in three lowland streams exposed to different land uses. Water, Air, and Soil Pollution, 186, 115–127.CrossRefGoogle Scholar
  65. Sierra, M. V., & Gómez, N. (2010). Assessing the disturbance caused by an industrial discharge using field transfer of epipelic biofilm. Science of the Total Environment, 408, 2696–2705.CrossRefGoogle Scholar
  66. Soriano, A., León, R. J. C., Sala, O. E., Lavado, R. S., Deregibus, V. A., Cauhepé, M. A., et al. (1991). Río de la Plata Grasslands. In R. T. Copeland (Ed.), Ecosystems of the world. Natural grasslands, introduction and western hemisphere (pp. 367–407). New York: Elsevier.Google Scholar
  67. Steinman, A. D., & Lamberti, G. A. (1996). Biomass and pigments of benthic algae. In R. Hauer & G. A. Lamberti (Eds.), Stream ecology (pp. 295–313). San Diego: Academic Press.Google Scholar
  68. Tangorra, M. (2004). Colonizacion y descompsición de especies vegetales por invertebrados en sistemas lóticos pampásicos. PhD dissertation, FCNYM-UNLP, Argentina.Google Scholar
  69. Tell, G., & Conforti, V. (1986). Euglenophyta Pigmentadas de la Argentina. Band 15, Bibliotheca Phycologica. Berlin, Stuttgart.Google Scholar
  70. Tomanova, S., Goitia, E., & Helesic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556, 251–264.CrossRefGoogle Scholar
  71. Van Sickle, J. (2003). Analyzing correlations between stream and watershed attributes. Journal of the American Water Resources Association, 39, 717–726.CrossRefGoogle Scholar
  72. Villeneuve, A., Montuelle, B., & Bouchez, A. (2010). Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences, 72, 33–44.CrossRefGoogle Scholar
  73. Williams, T. M., & Unz, R. F. (1989). The nutrition of Thiothrix, type 021 N, 1 Beggiatoa and Leucothrix strains. Water Research, 2, 15–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Agustina Cortelezzi
    • 1
    • 3
  • María Victoria Sierra
    • 2
    • 3
  • Nora Gómez
    • 2
    • 3
  • Claudia Marinelli
    • 1
  • Alberto Rodrigues Capítulo
    • 2
    • 3
  1. 1.Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNCPBA, Tandil)TandilArgentina
  2. 2.Instituto de Limnología ‘Dr. Raúl A. Ringuelet’ (ILPLA)La PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y MuseoUNLPLa PlataArgentina

Personalised recommendations