Environmental Monitoring and Assessment

, Volume 185, Issue 7, pp 5789–5800

Degradation of palm oil refinery wastewaters by non-thermal gliding arc discharge at atmospheric pressure

  • P. Mountapmbeme-Kouotou
  • S. Laminsi
  • E. Acayanka
  • J.-L. Brisset
Article

Abstract

The gliding electric discharge in humid air is a source of activated species forming (e.g. OH, NO and their derivatives H2O2, ONO2H and NO3H) which are present in a non-thermal plasma at atmospheric pressure. These species are able to degrade organic pollutants in palm oil refinery wastewaters (PORW). The increase in acidity (pH decrease), conductivity and total dissolved solids (TDS) and the decrease in the total organic carbon (TOC) of PORW samples exposed to the discharge are reported. More than 50 % TOC abatement is obtained for 15 min treatment in batch conditions with a laboratory reactor. The organic pollutants of PORW, i.e. mainly fatty acids are degraded according to a pseudo first-order reaction (k* = 0.06 min−1). Post discharge reactions are also observed after having switched off the discharge, which suggests that the pseudo first-order (k ≈ 0.05 min−1) degradation reactions should be attributed to the diffusion of soluble reactive species, e.g. H2O2 and ONOOH in the liquid target.

Keywords

Palm oil refinery wastewaters Fatty acids Pollution abatement Non-thermal air plasma Gliding arc discharge 

References

  1. Balazy, M. (1994). Peroxynitrite and arachidonic acid. Identification of arachidonate epoxides. Polish Journal of Pharmacology, 46, 593–600.Google Scholar
  2. Benstaali, B., Moussa, D., Addou, A., & Brisset, J.-L. (1998). Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. European Physical Journal Applied Physics, 4, 171–179.CrossRefGoogle Scholar
  3. Benstaali, B., Boubert, P., Cheron, B., Addou, A., & Brisset, J.-L. (2002). Density and rotational temperatures measurements of the ·NO and ·OH radicals produced by a gliding arc inhumid air and their interaction with aqueous solutions. Plasma Chemistry and Plasma Processing, 22, 553–571.CrossRefGoogle Scholar
  4. Bonnefont-Rousselot D., Beaudeux J. L., & Delattre J. (2005). Radicaux Libres et Stress Oxydant. Lavoisier Eds. Paris France, ch.6, pp.147–167.Google Scholar
  5. Botti, H., Batthyany, C., Trostchansky, A., Radi, R., Freeman, B. A., & Rubbo, H. (2004). Peroxynitrite-mediated α-tocopherol oxidation in low-density lipoprotein: a mechanistic approach. Free Radical Biology & Medicine, 36, 152–162.CrossRefGoogle Scholar
  6. Brisset, J.-L., & Hnatiuc, E. (2012). Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges in humid air over aqueous solutions. Plasma Chemistry and Plasma Processing, 32, 655–674. doi:10.1007/s11090-012-9384x.CrossRefGoogle Scholar
  7. Brisset, J.-L., Lelièvre, J., Doubla, A., & Amouroux, J. (1990). Interaction with aqueous solutions of the air corona products. Rev Phys Appl, 25, 535–543.CrossRefGoogle Scholar
  8. Brisset, J.-L., Moussa, D., Doubla, A., Hnatiuc, E., Hnatiuc, B., Kamgang Youbi, G., Herry, J.-M., Naitali, M., & Bellon-Fontaine, M.-N. (2008). Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media. Example of gliding discharge treated solutions. A review. Industrial and Engineering Chemistry Research, 47, 5761–5781.CrossRefGoogle Scholar
  9. Brisset, J.-L., Benstaali, B., Moussa, D., Fanmoe, J., & Njoyim-Tamungang, E. (2011). Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Science and Technology (Special issue), 20, 034021.CrossRefGoogle Scholar
  10. Briviba K., Klotz L.-O., & Sies H. (1999) Defenses against peroxynitrite. In: L. Packer (Ed). Nitric Oxide, Part C. New York :Academic Press. Chap 32, pp 301–311.Google Scholar
  11. Cicheli, A., & Solinas, M. (1984). Phenolic compounds of olives and olive oil. Riv Merceol, 23, 55–56.Google Scholar
  12. Czernichowski, A. (1992). Gliding discharge reactor for H2S valorisation or destruction. In: B. Penetrante & S, Schultheis (eds). "Non-thermal Plasma Techniques for Pollution Control". Nato ASI Series G34 B: 371–387.Google Scholar
  13. Czernichowski, A. (1994). Gliding arc: applications to engineering and environment control. Pure and Applied Chemistry, 66, 1301–1310.CrossRefGoogle Scholar
  14. Doubla, A. & Brisset, J.-L. (2006). Post-discharge kinetics associated with a plasmachemical nucleophilic substitution and application to the analysis of plasma activated CO. Journal of Applied Electrochemistry, 36, 77–85.Google Scholar
  15. Doubla, A., Bouba Bello, L., Fotso, M., & Brisset, J.-L. (2008). Plasma chemical decolourisation of bromothymol blue by gliding electric discharge at atmospheric pressure. Dyes Pig, 77, 118–124.CrossRefGoogle Scholar
  16. Fanmoe, J., Kamgan, J. O., Moussa, D., & Brisset, J. L. (2003). Application de l’arc glissant d’air humide au traitement des solvents industriels: cas du 1, 1,1-trichloroéthane. Phys Chem News, 14, 1–4.Google Scholar
  17. Gnokam Zumgang, F., Doubla A., & Brisset, J.-L. (2010). Temporal post-discharge reactions in plasma-chemical degradation of slaughterhouse effluents. Chemical Engineering Communications, 98, 483–493.Google Scholar
  18. Hnatiuc, E. (2002). “Procédés electriques de mesure et de traitement des polluants” (in French), Tec & Doc, Paris.Google Scholar
  19. Ikehata, K., & Gamal El-Din, M. (2005). Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes. A review. Ozone sci Technol, 27, 173–202.CrossRefGoogle Scholar
  20. Indarto, A., Choi, J.-W., Lee, H., Song, H. K., & Coowanitwong, N. (2006). Discharge characteristics of a gliding arc plasma in chlorinated methans diluted in atmospheric air. Plasma device Oper, 14, 15–26.CrossRefGoogle Scholar
  21. Kamgang Youbi, G., Briandet, R., Herry, J.-M., Brisset, J.-L., & Naitali, M. (2007). Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using gliding discharge in humid air. Journal of Applied Microbiology, 103, 621–628.Google Scholar
  22. Krawczyk, K., & Ulejczyk, B. (2003). Decomposition of chloromethanes in gliding discharges. Plasma Chemistry and Plasma Processing, 23, 265–281.CrossRefGoogle Scholar
  23. Laminsi S., Acayanka E., Teke Ndifion P., Djore Tiya A., & Brisset J.-L. (2012). Direct and post discharge chemical reactions of Fe(II) complexes in non-thermal plasma Desalination and Water Treatment, 37, 38–45.Google Scholar
  24. Lesueur H, Czernichowski A, & Chapelle J (1988). Dispositif de génération de plasma basse température par formation de décharges électriques glissantes. Brevet Français, No 2639172.Google Scholar
  25. Locke, B. R., Sato, M., Sunka, P., Koffmann, M. R., & Chang, J. S. (2006). Electrohydraulic discharges and non-thermal plasma for water treatment. Industrial and Engineering Chemistry Research, 45, 882–905.CrossRefGoogle Scholar
  26. Masschelein W. S. (1991). “Ozone et Ozonation des Eaux” (in French), Tec & Doc, Paris.Google Scholar
  27. Moussa, D., & Brisset, J.-L. (2003). Disposal of spent tributylphosphate by gliding arc plasma. Journal of Hazardous Materials, B102, 189–200.CrossRefGoogle Scholar
  28. Moussa, D., Abdelmalek, F., Benstaali, B., Addou, A., Hnatiuc, E., & Brisset, J.-L. (2005). Acidity control of the oxidation reactions induced by non-thermal plasma treatments of aqueous effluents in pollutant abatement processes. The European Physical Journal—Applied Physics, 29, 189–199.CrossRefGoogle Scholar
  29. Moussa, D., Brisset, J.-L., Hnatiuc, E., & Decobert, G. (2006). Plasmachemical destruction of trilaurylamine from nuclear laboratories of reprocessing. Industrial and Engineering Chemistry Research, 45, 23–29.CrossRefGoogle Scholar
  30. Moussa, D., Doubla, A., Kamgang Youbi, G., & Brisset, J.-L. (2007). Post-discharge long life reactive intermediates involved in the plasma-chemical degradation of an azo dye. IEEE Transactions on Plasma Science, 35, 444–453.CrossRefGoogle Scholar
  31. Moussa, D., Naitali, M., Herry, J.-M., Hnatiuc, B., & Brisset, J.-L. (2010). Reactions induced by electrical discharges in pollutant abatement and bacterial inactivation. IEEE Conf. Optim, 2010, 1329–1335.Google Scholar
  32. Naitali M., Hnatiuc B., Herry J.-M., Hnatiuc E., Bellon-Fontaine M.-N., & Brisset J.-L. (2009) Decontamination of chemical and microbial targets using gliding electrical discharges. In: G. Brelles Marino (ed). Biological and environmental applications of gas discharges plasmas”. Nova Science Publisher, Hauppauge, N.Y.; chap 6.Google Scholar
  33. Njoyim-Tamungang, E., Ghogomu, P., Nzali, S., Laminsi, S., Doubla, A., & Brisset, J.-L. (2009). Coupling gliding discharge treatment and catalysis by oyster shell powder for pollution abatement of surface waters. Industrial and Engineering Chemistry Research, 48, 9773–9780.CrossRefGoogle Scholar
  34. O’Donnell, V. B., Eiserich, J. P., Bloodsworth, A., Chumley, P. H., Kirk, M., & Barnes, S. (1999). Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods in Enzymology, 301, 454–470.CrossRefGoogle Scholar
  35. Radi, R., Beckman, J. S., Bush, K. M., & Freeman, B. A. (1991). Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Archives of Biochemistry and Biophysics, 288, 481–487.CrossRefGoogle Scholar
  36. Radi, R., Denicola, A., Alvarez, B., Ferrer-Sueta, G., & Rubbo, H. (2000). Nitric oxide biology and pathobiology. In L. J. Ignarro (Ed.), Nitric Oxide: Biology and Pathobiology (pp. 57–82). San Diego: San Diego Academic Press.CrossRefGoogle Scholar
  37. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., & Freeman, B. A. (1994). Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. Journal of Biological Chemistry, 269, 26066–26075.Google Scholar
  38. Rubbo, H., Trostchansky, A., & O’Donnell, V. B. (2009). Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Archives of Biochemistry and Biophysics, 484, 167–172.CrossRefGoogle Scholar
  39. Ryan, D., & Robards, K. (1998). Phenolic compounds in olives. Analyst, 123, 31–44.CrossRefGoogle Scholar
  40. Sayadi, S., Allouche, N., & Jaoua Aloui, F. (2000). Detrimental effects of high molecular-mass polyphenols on olive mill wastewaters biotreatments. Process Biochemistry, 35, 725–735.CrossRefGoogle Scholar
  41. Sekher Pannala, A., Singh, S., & Rice-Evans, C. (1999). Interaction of carotenoids ans tocopherols with peroxynitrite. In: L. Packer (ed.). Methods in Enzymology Vol. 301: Nitric Oxide, Part C. New York: Academic Press. Chap 34. pp 319–332.Google Scholar
  42. Thomas A. (2002). Fats and fatty oils. Ullmann's Encyclopedia of Industrial Chemistry, Release, 6th Edition. www.foretcommunale-cameroun.org/. 2001 Normes environnementales et procédures d’inspection des installations industrielles et commerciales au Cameroun.

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P. Mountapmbeme-Kouotou
    • 1
    • 2
  • S. Laminsi
    • 1
  • E. Acayanka
    • 1
  • J.-L. Brisset
    • 3
  1. 1.Department of Inorganic Chemistry, Laboratory of Mineral ChemistryUniversity of Yaounde IYaoundeCameroon
  2. 2.Department of Materials, Achitecture and Housing, Superior Institute for SahelUniversity of MarouaMarouaCameroon
  3. 3.Faculty of SciencesUniversity of RouenMont Saint AignanFrance

Personalised recommendations