Skip to main content

Advertisement

Log in

Interrelationships of pollution load index, transfer factor, and concentration factor under the effect of sludge

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A greenhouse experiment was conducted during 2010–2011. A complete randomized blocks design was used including seven treatment levels of sludge(tons per hectare), i.e., 0, 6, 12, 18, 24, 30, and “30+ treated wastewater”, in four replications. Lettuce (Lactuca sativa L var longifolia) was chosen as a test plant. The purpose of the experiment was to study the relationships between soil Pollution Load Index, heavy metal transfer factor, and concentration factor and to determine optimum concentration factor values. The following were found: several mathematical relationships were established between the above parameters that could be used for the study of heavy metal accumulation in soils and plants under the effect of the applied sludge. They can be also used for the calculation of one of the above parameters as a function of the others. Based on the experimental data, the optimum concentration factor for several heavy metals were determined by multiple linear regression analysis, expressing the concentration factor as a function of the maximum dry lettuce matter yield, and of optimum/minimum heavy metal content of plant dry matter. The mean value of the calculated concentration factor obtained for each separate metal was: Zn, 2.93; Cd, 0.39; Co, 1.47; and Ni, 0.52.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environment: biochemistry, bioavailabiolity and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • AOAC. (1996). Official methods of analysis of Association of Official Agricultural Chemists AOAC International (16th ed., pp. 2027–2417). Gaithersburg: Publication International.

    Google Scholar 

  • APHA. (1992). Standard methods for examination of water and wastewater. Method 3110, American Public Health Association AWWA WEF (18th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Cabrera, F., Clemente, L., Diaz Barrientos, E., Lopez, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. The Science of the Total Environment, 242, 117–129.

    Article  CAS  Google Scholar 

  • Chang, A. C., Granato, T. C., & Page, A. L. (1992). Amethodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewge sludge. Journal of Environmental Quality, 21, 521–536.

    Article  CAS  Google Scholar 

  • Cui, Y., Zhu, Y.-G., Zhai, R., Huang, Y., Qiu, Y., & Liand, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environmental International, 31, 784–790.

    Article  CAS  Google Scholar 

  • Ganesh, K. S., Baskaran, L., Rajasekaran, S., Sumathi, K., Chidambaram, A. L., & Sundaramoorthy, P. (2008). Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surfaces, 63(2), 159–163.

    Article  CAS  Google Scholar 

  • Gopal, R., & Risvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70, 1539–1544.

    Article  CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in Alcala de Henares Spain: human health risks. Environmental International, 28, 159–164.

    Article  CAS  Google Scholar 

  • Hattab, S., Chouba, L., Ben Kheder, M., Mahouachi, T., & Bousseta, H. (2009). Cadmium and copper induced DNA damage in Pissum sativum root and leaves, as determined by the comet assay. Plant Biosystems, 143, S6–S11.

    Article  Google Scholar 

  • Jackson, M. L. (1958). Soil chemical analysis (pp. 1–250). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Kalavrouziotis, I. K., & Koukoulakis, P. H. (2012). Soil pollution under the effect of treated municipal wastewater. International Journal Environmental Monitoring and Assessment 184, 6297–6305. doi:10.1007/s10661-011-2420-0.

  • Kalavrouziotis, I. K., Koukoulakis, P. H., & Kostakioti, E. (2011). Assesment of metal transfer factor under irrigation with treated municipal wastewater. International Journal Agricultural Water Management, 103, 114–119.

    Article  Google Scholar 

  • Kalavrouziotis, I. K., Koukoulakis, P. H., & Kostakioti, E. (2012). Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agricultural Water Management, 103, 114–119.

    Article  Google Scholar 

  • Lanyon, L. E., & Heald, W. R. (1982). Magnesium, calcium strontium, and barium. In A. L. Page et al. (Eds.), Methods of soil analysis part 2 (pp. 247–262). Madison: ASA.

    Google Scholar 

  • Li, Q., Cai, S., Mo, C., Chu, B., Peng, L., & Yang, F. (2010). Toxic effects of heavy metals and their accumulation in vegetables, grown in saline soil. Ecotoxicology and Environmental Safety, 73, 84–88.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA micronutrient soil test for zinc, iron manganese and copper. Soil Science Society of American Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Z., Suderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing. China Environment International, 31, 805–812.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chang, A. C., Page, A. L., & Witter, E. (1994). Land application of sewge sludge, scientific perspectives of heavy metal loading limits in Europe and in the United States. Environmental Review, 2, 108–118.

    Article  CAS  Google Scholar 

  • Mills, H. A., Benton Jones Jr, J., (1996). Plant Analysis Handbook. Athens, GA: MicroMacro Publishing Inc., p. 345.

  • Murzaeva, S. V. (2004). Effext of heavy metal on wheat seedlings:activation of antioxidant enzymes. Applied Biochemistry and Microbiology, 40, 98–103.

    Article  CAS  Google Scholar 

  • Nan, Z., Zhao, Z., Liu, X., Saha, U. K., MaLena, Q., Clarke-Sather, et al. (2010). The uptake and translocation of selected elements by cole (Brassica) grown using oasis soils in pot experiments. Toxicological and Environmental Chemistry, 92(8), 1541–1549.

    Article  CAS  Google Scholar 

  • Oliver, M. A. (1997). Soil and human health. European Journal of Soil Science, 48, 573–592.

    Article  CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular Number 939. Washington DC: U.S. Government Printing Office.

    Google Scholar 

  • Ouzounidou, G., Mustakas, M., & Eleftheriou, E. R. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L) leaves. Archives of Contamination and Toxicology, 32, 154–160. doi:10.1007/s002449900168.

    Article  CAS  Google Scholar 

  • Panda, S. K., Chaudhry, I., & Khan, M. H. (2003). Heavy metals induce lipid peroxidation, and affect antioxidants in wheat leaves Biologia Plantgum 46, 289–294. doi:10.1023/A:1022871131698.

  • Pereira, B. F. F., He, Z. L., Stoffela, P. J., & Melfi, A. J. (2011). Reclaimed wastewater effects on citrus nutrition. Agricultural Water Management, 98, 1828–1833.

    Article  Google Scholar 

  • Richards, I. A. (1954). Diagnosis and improvement of alkaline and sodic soils. Agric. Handbook No 60 (p. 84). Washington DC: USDA.

    Google Scholar 

  • Singh, R. P., & Agrawal, M. (2010). Variation in heavy metal accumulation, growth and yield of rice plants, grown at different sewage sludge amendment rates. Ecology and Environmental Safety, 73, 632–641.

    Article  CAS  Google Scholar 

  • Sinha, S., Sinam, G., Mishra, K. R., & Mallick, S. (2010). metal accumulation, growth, antioxidants, and oil yield of Brassica juncea L, exposed to different metals. Ecotoxicology and Environmental Safety, 73, 1352–1361.

    Article  CAS  Google Scholar 

  • Soltanpour, P. N., Johnson, C. W., Workman, S. M., Jones, J. B., Jr., & Miller, R. O. (1998). Advances in ICP emission and ICP mass spectroscopy. Advances in Agronomy, 64, 28–113.

    Article  Google Scholar 

  • Tomlison, L., Wilson, G., Harris, R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and formation of pollution index. Helgol Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Ure, A. M. (1995). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soil (2nd ed., p. 58). London: Blackie.

    Chapter  Google Scholar 

  • Uveges, J. L., Cprbett, A. L., & Mal, T. K. (2002). Effects of Pb contamination on the growth of Lythrum salicaria. Environmental Pollution, 120, 319–323.

    Article  CAS  Google Scholar 

  • WHO. (1992). Cadmium, environmental health criteria. Geneva World Health Organization, 134, 1–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Kalavrouziotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntzala, G., Koukoulakis, P.H., Papadopoulos, A.H. et al. Interrelationships of pollution load index, transfer factor, and concentration factor under the effect of sludge. Environ Monit Assess 185, 5231–5242 (2013). https://doi.org/10.1007/s10661-012-2939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2939-8

Keywords

Navigation